خرید و دانلود فایلهای علمی

انواع تحقیق پروژه پاورپوینت مقاله و سایر فایلهای مجاز

خرید و دانلود فایلهای علمی

انواع تحقیق پروژه پاورپوینت مقاله و سایر فایلهای مجاز

ترجمه مقاله تعیین مکان بهینه گره در شبکه های مسیریابی فرصت طلب بی سیم

ترجمه مقاله تعیین مکان بهینه گره در شبکه های مسیریابی فرصت طلب بی سیم

چکیده-در سال های اخیر، توجه روز افزونی به مسیریابی فرصت طلب به عنوان روشی برای افزایش ظرفیت شبکه های بی سیم با بکارگیری طبیعت انتشاری آن پرداخته شده است. برخلاف مسیریابی تک مسیره قدیمی، در مسیریابی فرصت طلب گره هایی که ارسال های همسایه را می توانند استراق سمع[1] بکنند می توانند کاندیدهای فرستنده بسته به سمت مقصد شوند. در این مقاله به این سوال خواهیم پرداخت: حداکثر کارایی که می توان با استفاده از مسیریابی فرصت طلب به دست آورد چقدر است؟ برای پاسخ به این سوال، از یک مدل تحلیلی استفاده می کنیم که اجازه می دهد تا موقعیت بهینه گره ها را محاسبه کنیم، به طوری که حرکت به سمت مقصد به حداکثر برسد. از این مدل برای محاسبه کران های مینیمم استفاده می شود که می تواند تعداد ارسال ها در یک شبکه را با استفاده از مسیریابی فرصت طلب به دست آورد.

کلیدواژگان: شبکه های بی سیم، مسیریابی فرصت طلب، عملکرد ماکزیمم، مدل تحلیلی.

1. مقدمه

شبکه های بی سیم چند هاپ[2] (MWN) تبدیل به یک حوزه پژوهشی بسیار فعال در سال های گذشته شده اند. به دلیل دو تفاوت اساسی، مسیریابی در MWN پر چالش تر از شبکه های سیمی است، تفاوت اول در ویژگی های ناهمگن لینکهای بی سیم است. در نتیجه، تفاوت های قابل توجهی در احتمالات تحویل بسته می تواند در سراسر لینک یک شبکه MWN وجود داشته باشد. تفاوت دوم به ماهیت انتشار ارسال های بی سیم بر می گردد[3]. بر خلاف شبکه های سیمی، که در آن ها لینک ها به طور معمول نقطه به نقطه هستند، در شبکه بی سیم هنگامی که یک گره بسته ای ارسال می کند، همسایه های گره مقصد مورد نظر می توانند آن را استراق سمع کنند.

پروتکل های مسیریابی در MWN بطور مرسوم با استفاده از پروتکل های توزیعی که در هر گره بهترین لینک را برای هر مقصد (هاپ بعدی) اتتخاب می کنند به مدیریت مشخصه های ناهمگن لینک های بی سیم می پردازد. هنگامی که تمام گره های بعدی انتخاب شدند، تمامی بسته ها بین مبدا و مقصد همان مسیر را دنبال می کند. که چنین پروتکلهایی، مسیر یابی تک مسیره[3] نام دارند.

مسیریابی فرصت طلب (OR) [4-7] برای افزایش عملکرد MWNها با استفاده از طبیعت پخش رسانه های بی سیم پیش بینی شده است. در OR، به جای اینکه یک گره تکی از قبل به عنوان فرستنده بسته انتخاب شود تا هاپ بعدی شود، یک مجموعه گره های سفارشی (یعنی کاندیدها) به عنوان فرستنده های ممکن هاپ بعدی انتخاب می شوند. بنابراین، مبدا می تواند مسیرهای بالقوه متعددی را برای تحویل بسته ها به مقصد استفاده نماید. پس از ارسال
یک بسته، تمام کاندیدها که با موفقیت آن را دریافت می کنند در میان خود برای تعیین اینکه کدام یک از آن ها این بسته را ارسال خواهد کرد هماهنگ می شوند؛ بقیه نیز بسته را کنار خواهند گذاشت.

تحقیق قبلی در این زمینه عمدتا در ارائه و ارزیابی مکانیزم های انتخاب کاندیدهای مختلف و پروتکل های مسیریابی تمرکز داشته است. فلذا، عملکرد مکانیزم پیشنهادی، با عملکرد سناریو پایه مسیریابی سنتی تک مسیره و یا با عملکرد مکانیزم های OR دیگر مقایسه می شود. این عملکرد به طور کلی از نظر تعداد ارسال های مورد انتظار از مبدا به مقصد (که، همانند [8]، به آن ارسال هر مسیره انتظاری[4]، EAX می گوییم) اندازه گیری می شود. از نظر ما تمامی مطالعات فرض می کنند که توپولوژی شبکه مشخص است و ارزیابی های و مقایسه ها روی آن توپولوژی، و یا انواع آنها انجام می شود. در این مقاله رویکرد متفاوتی را دنبال می کنیم. در اینجا، به بررسی حداکثر بهره ای که می توان با استفاده از OR به دست آورد می پردازیم. برای این منظور، به مطالعه موقعیت بهینه گره های کاندید می پردازیم. لذا بینش به دست آمده برای پیشنهاد قوانین طراحی عملی برای شبکه های بی سیم چند هاپ اعمال می گردد.

در بخش اول این مقاله، در مورد این سوال صحبت خواهیم کرد: حداکثر بهره که می توان با استفاده از OR به دست آورد چقدر است؟ منظور از بهره، تفاوت نسبی تعداد مورد انتظار ارسال های لازم بین OR و سناریو مسیر یابی پایه تک مسیره است. به طور خاص، بر روی یک سناریو تمرکز می کنیم که در آن حداکثر تعداد کاندیدها به ازای هر گره محدود است. برای پاسخ به سوال قبلی، از یک شبکه که در آن گره ها بطور بهینه قرار گرفته اند استفاده می کنیم به طوری که در هر ارسال حرکت به سمت مقصد ماکزیمم شود. برای این کار، باید فرض کنیم که یک فرمول برای احتمال تحویل، p(d)، بین گره ها در فاصله d داریم. برای سادگی، باید همان تابع ، p(d)، را برای هر جفت از گره ها در نظر بگیریم. با این حال، این مدل را می توان با فرض یک تابع متفاوت برای هر لینک تعمیم داد. در تجزیه و تحلیل ما p(d) با استفاده از مدل انتشار رادیویی داده خواهد شد. رابطه محاسبه تعداد ارسال های مورد انتظار OR توسط نویسندگان مختلف (به عنوان مثال [8-10]) بدست آمده است. که آن رابطه بازگشتی بوده و وابستگی غیر خطی به احتمال تحویل بین گره ها دارد. از این فرمول برای اهداف مقایسه ای استفاده خواهیم کرد، و در بقیه مقاله، از آن به عنوان فرمول بازگشتی[5] EAX یاد خواهیم کرد.


[1] Overhearing

[2] Multi-hop

[3] Uni-path

[4] Any-path transmission

[5] Recursive formula



خرید فایل


ادامه مطلب ...

برنامه نویسی موازی شبکه روی سیستم GPU چندهسته ای شتاب یافته با بهینه سازی

برنامه نویسی موازی­ شبکه روی سیستم GPU چندهسته­ای شتاب­یافته با بهینه­ سازی

چکیده
واضح است که کدگذاری شبکه به عنوان روشی امیدوارکننده برای بهبود بازده شبکه و پهنای باند موجود پدید آمده است. اما، با توجه به پیچیدگی محاسباتی بالا، قابلیت پیاده­سازی کدگذاری شبکه هنوز هم به عنوان یک چالش بر جای مانده است. همچنین، کاربردهای شتاب­یافته با GPU محدود به روش­های سنتی هستند، که در آن GPU بعنوان یک کوپروسسور[1] برای مصرف مجموعه­داده­های انتقالی از CPU استفاده می­شود. بنابراین، یک چارچوب کدگذاری شبکه موازی مهاجم با بهینه­سازی برای GPU سفارشی شده است، که در آن یک گرنیولاریتی[2] مناسب موازی­شدگی برای کدگذاری شبکه ارائه شده است، و GPU نه تنها می­تواند به عنوان مصرف­کننده داده، بلکه تولیدکننده داده­ نیز عمل کند. علاوه بر این، کدگذاری شبکه خطی تصادفی، در GPU فعال شده با CUDA موازی و بهینه­سازی شده است تا به اعتباربخشی روش ارائه شده بپردازد. نتایج عملی [آزمایشگاهی] نشان می­دهد که موازی کردن کدگذاری شبکه در سیستم چندهسته شتاب­یافته با GPU استفاده از روش­های پیشنهادی بسیار موثر است.

کلمات کلیدی: GPU، کدگذاری شبکه، موازی­سازی، CUDA، بهینه­سازی.

1. مقدمه

کدگذاری شبکه، یکپارچه­سازی کدگذاری اطلاعات و مسیریابی شبکه، تکنیکی برای تبادل اطلاعات است، که در آن بسته­های اطلاعاتی قبل از ارسال کدبندی [کدگذاری] می­شوند.

با توجه به مزایایی از قبیل بهبود بازده شبکه، متعادل کردن بارها، کاهش تاخیر انتقال و مصرف انرژی گره، و افزایش استحکام شبکه [1]، کدگذاری شبکه به طور گسترده­ای در ذخیره­سازی فایل­های توزیعی [2] در شبکه­های بی­سیم استفاده شده است [3]. با این حال، واقعیت وجود محیط شبکه غیرقطعی [4]، پیچیدگی محاسباتی بالای کدگذاری شبکه [5] به عملکرد سیستم­های کدگذاری شبکه [5] آسیب می­رساند، لذا قابلیت پیاده­سازی آن هنوز هم یک چالش است. بنابراین، بهینه­سازی کدگذاری شبکه [6] کاربردی است، و بهینه­سازی به نفع کاهش محاسبات و هزینه کدگذاری شبکه از جمله الگوریتم بهبود کدگذاری شبکه [7] و شتاب کدگذاری شبکه مبتنی بر سخت افزار یا معماری [5] [8-9] است.

کدگذاری شبکه شتاب­یافته با معماری GPU به نتایج قابل­توجهی دست یافته است و هنوز هم در حال پیشرفت است. با این حال، کار قبلی برای به حداکثر رساندن مصرف منابع محاسباتی GPU برای بازده سیستم کدگذاری شبکه موازی اختصاص داده شده است اما هنوز هم مطلوب نیست. همچنین، کار کمی بر روی بهینه­سازی سلسله مراتب حافظه برای سیستم کدگذاری شبکه وجود دارد. بنابراین، یک چارچوب کدگذاری موثر شبکه موازی از جمله بهینه­سازی حافظه برای بهبود بهره­برداری علاوه بر مصرف منابع محاسباتی GPU ارائه شده لازم است.

2. معماری و مدل برنامه نویسی CUDA


شکل 1، نمایی کلی از معماری سیستم مشترک متشکل از GPU و CPU را نشان می­دهد، که در آن داده­ها بین CPU و GPU با کانال PCIe مورد تقاضا انتقال می­یابند. معماریGPU شامل تعدادی از مولتی­پروسسورهای مقیاس­پذیر (SMها) است که هر کدام شامل هشت هسته جریان پردازنده (SP) است و هر سه SM تشکیل یک شاخه مولتی پروسسور ریسه­ای (TPC) در NVidia GTX 280، حافظه پنهان[3] ثابت خواندنی، و حافظه پنهان بافت[4] خواندنی است. علاوه بر این، هر SM دارای16KB حافظه داخلی خواندنی و نوشتنی است که وجه مشترک همه SP های 8 بیتی است.

...



خرید فایل


ادامه مطلب ...

ترجمه مقاله بهینه سازی منحنی شارژ خودروی برقی به منظور کاهش هزینه انرژی و بهبود عمر باتری

ترجمه مقاله بهینه سازی منحنی شارژ خودروی برقی به منظور کاهش هزینه انرژی و بهبود عمر باتری

چکیده

این مقاله مساله بهینه­سازی منحنی شارژ خودروی الکتریکی هیبریدی با اتصال برق (PHEV) را بررسی می کند، که در آن، منحنی شارژ با زمان و سرعتی که PHEV از شبکه قدرت، برق دریافت می کند تعریف می شود. دو هدف در این بهینه­سازی در نظر گرفته شده است. اولا، کل هزینه مربوط به سوخت و برق مصرفی توسط PHEV باید در یک سیکل حرکتی[1] 24 ساعته به حداقل برسد. این هزینه با استفاده از روش مدیریت توان تصادفیPHEV بهینه که قبلا توسعه یافته است پیش بینی می شود. دوما، کل تخریب سلامت باتری در سیکل 24 ساعت را هم به حداقل می رسانیم. این تخریب با استفاده از یک مدل تشکیل نوار مقاومتی در سمت-آند که مبتنی بر الکتروشیمی است در باتری های لیتیوم-یون پیش بینی می شود. این مقاله نشان می دهد که این دو هدف مخالف هم هستند و با استفاده از الگوریتم ژنتیک چند هدفه با مرتب سازی نامغلوب NSGA-II مصالحه ای[2] بین آن­ها ایجاد می کند. در نتیجه، جبهه پارتو مسیرهای شارژ PHEV بهینه به دست می آید. اثر قیمت برق و برنامه ریزی سفر[3] در جبهه پارتو مورد بحث و بررسی قرار می گیرد.

  1. 1. مقدمه

این مقاله، خودروهای الکتریکی هیبریدی با اتصال برق (PHEV) که هم از سوخت و هم از برق باتری استفاده می کنند را بررسی می کند، که برق را می تواند هم از طریق دستگاه تولید برق در خود ماشین و یا از طریق اتصال به پریز برق بدست بیاورد. هدف کلی این مقاله بهینه­سازی منحنی شارژ چنین PHEV هایی است که از طریق زمان بندی و سرعتی که با آن از شبکه برق می گیرند تعریف می شوند این بهینه سازی را با دو هدف انجام می دهیم، (1) به حداقل رساندن هزینه های کل مصرف انرژی روزانه PHEV و (2) به حداقل رساندن همزمان تخریب باتری های PHEV. این بهینه سازی گام مهمی برای دستیابی به مزایای اقتصادی و زیست محیطی بالقوه از PHEV است که جامعه علمی انتظار دارند[1-5]. علاوه بر این، مسیرهای شارژ بهینه را می توان برای ایجاد یک مدل پیش­بینی فضایی-زمانی برای مدل بار PHEV بر روی شبکه استفاده کرد، با فرض اینکه مصرف­کنندگان از این استراتژی بهینه شارژ استفاده خواهند کرد.

در منابع به بررسی منحنی های شارژ PHEV از نقطه نظرهای مختلف پرداخته شده است. معمول­ترین روش در این زمینه، طرح شارژ شبانه است، که فرض می کند شارژ PHEVها در اواخر نیمه شب یعنی 10 شب یا 12 شب شروع می شود. شارژ کردن در عصر طرح دیگری است که مورد بررسی قرار گرفته است [5]. طرح­های پیچیده تر که وابسته به هزینه و یا سفر هستند همانند "بلافاصله بعد از سفر" و "بهینه شده به خارج از پیک" و "شارژ فرصتی" برای پیش بینی بار PHEV فرض شده و مورد استفاده قرار گرفته است [6]. این مقاله، شارژ PHEV را در حالی بهینه­سازی می کند که برای اولین بار اثرات هزینه کل انرژی، سلامت باتری، قیمت گذاری برق و الگوهای PHEV را بصورت مرکب در نظر می گیرد. مسیرهای شارژ بدست آمده از این بهینه­سازی بطور قابل ملاحظه ای متفاوت از آنهایی است که فقط برای هزینه انرژی یا عمر باتری بهینه­سازی شده اند.

یکی از بخش­های لازم و البته گران قیمت­ PHEVها سیستم ذخیره­سازی ظرفیت بالای باتری است که به مرور زمان و با گذشت سیکل تخریب می شود [7-9]. این مقاله بطور خاص بر روی PHEV هایی تمرکز دارد که از باتری های لیتیوم یون برای چنین ذخیره سازی استفاده می کنند. منابع [مقالات] در رابطه با مدلسازی باتری های لیتیوم-یونی اساسا به دو دسته اصلی تقسیم می شوند الف) مدل­های تجربی [عملی و آزمایشگاهی] که براساس مشاهدات تجربی رفتار ورودی/خروجی باتری به عنوان مثال مدلهای مدار معادل ساخته می شوند [10و11]، و ب) مدلهای درست­یابی [4] بالا که از اصول اولیه الکتروشیمی باتری استخراج می شوند [12و13]. مدل­سازی محوشدگی ظرفیت و کاهش عمر عمدتا در دسته­بندی دوم قرار گرفته اند. این مقاله از مدل باتری­های مبتنی بر اصول اولیه الکتروشیمی که توسط دویل و همکاران [12] و فولر و همکاران [13] و بعد از آن توسط راماداس و همکاران [14] از طریق افزودن یک جزء ظرفیت محو شدگی توسعه یافته است استفاده می کند. در این مدل، مکانیزم تخریب باتری توسط یک واکنش فرعی در الکترود منفی (آند) کنترل می شود، و منجر به شکل گیری یک نوار واسط الکترولیت جامد برگشت­ناپذیر (SEI) بر روی الکترود، و تلفات یون­های لیتیوم تجدیدپذیر شده است. اگرچه چندین مکانیزم تخریب دیگر برای باتری­های لیتیوم-یونی همانند اضافه­حرارت، اضافه­شارژ، تخلیه شدید و غیره [15] وجود دارد، در این مقاله ما تنها تشکیل نوار SEI را بعنوان اولین دلیل تخریب باتری در نظر می گیریم. روش مورد استفاده در اینجا قابل تعمیم به مکانیزم های دیگر هم هست.


[1] Drive cycle

[2] Trade off; سبک و سنگین کردن

[3] Trip; مسیری که خودرو می پیماید

[4] High-fidelity



خرید فایل


ادامه مطلب ...

ترجمه مقاله استفاده از بهینه سازی ذرات

ترجمه مقاله استفاده از بهینه سازی ذرات

چکیده:

در بسیاری از کشورها سیستم های قدرت در حال حرکت بسوی ساخت یک ساختار رقابتی برای خرید و فروش انرژی الکتریکی می باشند. این تغییرات و مزایای بسیار واحدهای تولید پراکنده DG) ها( بخاطر بالا بودن تکنولوژی و ملاحضات اقتصادی ترغیب بیشتری برای استفاده از این دست از ژنراتورها نسبت به گذشته را موجب شده اند. از اینرو، لازم است تا اثر DGها بر روی سیستم های قدرت، بخصوص بر روی شبکه های توزیع مورد مطالعه قرار گیرد. پیکر بندی دوباره فیدر (DFR) یکی از طرح های بسیار مهم کنترلی در شبکه های توزیع، که می تواند تحت تاثیر DGها قرار گیرد می باشد. این مقاله یک رویکرد نوین برای DFR در شبکه های توزیع با بررسی DGها ارائه می دهد. هدف عمده DFR کمینه کردن انحراف ولتاژ باس، تعداد عمل کلیدها و هزینه کل توان اکتیو تولیدی توسط DGها و شرکت های برق می باشد. از آنجایی که DFR یک مساله بهینه سازی غیر خطی می باشد، ما از روش (PSO) استفاده می کنیم تا آنرا حل کنیم. امکان انجام رویکرد پیشنهادی تشریح و با دیگر روش های تکاملی مانند الگوریتم ژنتیک (GA)، جستجوی تابو (TS)، و تکامل نفاضلی(DE) بر روی یک سیستم آزمایشی توزیع واقعی مقایسه شده است.

کلیدواژگان:

ژنراتور پراکنده (تولید پراکنده) ؛ پیکر بندی دوباره فیدر توزیع ؛ ؛ شبکه توزیع

1. پیشگفتار:

واحد های تولید پراکنده DG) ها( واحد های متصل به شبکه یا مستقل (خود تغذیه) می باشند که در داخل سیستم توزیع الکتریکی در نزدیکی یا داخل مصرف کننده آخر قرار می گیرند. اینکه نیروگاهای توان الکتریکی متمرکز در آینده عمده منابع تولید توان الکتریکی را خواهند داشت عموما پذیرفته شده است. با این وجود، DGها می توانند به سیستم های قدرت مرکزی با تامین شبکه یا مصرف کننده نهایی با ظرفیت افزایشی کمک کنند. نصب DGها در نزدیکی یا داخل مصرف کننده نهایی همچنین می تواند، در برخی موارد، به سود شرکت برق باشد با اجتناب یا کاهش آپگریدهای سیستم توزیع یا انتقال. با بحساب آوردن ملاحضات مصرف کننده ها، یک قابلیت هزینه کم، قابلیت اطمینان بالای سرویس، کیفیت توان بالا، بازده انرژی رو به افزایش، و استقلال انرژی می تواند دلایل مهم برای توجه به DGها باشد. استفاده از تولیدات پراکنده انرژی های نو مانند باد، خورشید ، زمین گرمایی یا توان برقابی می تواند فواید قابل ملاحضه زیست محیطی را بدنبال داشته باشد. انتظار می رود که نفوذ تولیدات پراکنده بیش از 25% کل تولیدات باشد، در افق زمانی قابل پیش بینی [1]. بنابراین، مطالعه اثرات آنها بر روی سیستم های توزیع از اهمیت بسیار بالایی برخوردار می باشد. پیکر بندی دوباره فیدر (DFR) یکی از مهمترین طرح های کنترلی در شبکه های توزیع می باشد که می تواند تحت تاثیر DGها قرار گیرد. در سالهای اخیر، بسیاری از پژوهشگران کمینه کردن تلفات را در نواحی پیکربندی مجدد شبکه در سیستم های توزیع مورد بررسی قرار داده اند. مساله کمینه کردن تلفات بواسطه پیکربندی مجدد سیستم توزیع اولین بار توسط مرلین و باک در سال 1975 گزارش شده است[2]، که آنها سیستم توزیع را مانند ساختار یک درخت پوشا (زیر گرافی از یک گراف)، با دسته خطوط که توسط کمان های گراف نمایش داده می شد و باس ها با گره ها مدل کردند. ساختار نهایی که تلفات را کمینه می کرد از روی مقادیر یافته شده توسط متغیرهای باینری مربوط به وضعیت کلید ها که در آن قیود سیستم نادیده گرفته شدند مشخص شد. در [6-3]، مولفان استفاده از یک روش مبتنی بر الگوریتم اکتشافی برای تعیین ساختار شبکه های توزیع شعاعی، که نهایتا منجر به کمینه شدن تلفات شد پیشنهاد کرده اند. در [7]، مولفان یک روش حلی را پیشنهاد کرده اند، کابربرد تابکاری شبیه سازی شده (SA)، تا یک پاسخ غیر خطی قابل قبول را جستجو کند. در [9و8]، مولفان کاربردهای مبتنی بر هوش مصنوعی را پیشنهاد کرده اند. در [10] مولفان آنالیزهای بار متغیر با زمان را برای کاهش تلفات مورد بحث و بررسی قرار داده اند. در [12و11]، مولفان تکنیک های بهینه سازی را با قوانین اکتشافی و منطق فازی را برای عملکرد قدرتمندانه و با بازده بالا ترکیب کرده اند. اخیرا، الگوریتم ژنتیک (GA) و برنامه نویسی تکاملی از [20-13] استفاده می کند. در [22و21]، مولفان همچنین یک روش حل با توجه به DGها را پیشنهاد می کنند، اما اثر DGها در عملکرد سیستم توزیع بطور جزئیاتی مورد مطالعه قرار نگرفته است. در این مقاله، یک رویکرد جدید DFR برای یک شبکه توزیع شامل واحدهای DG ارائه داده می شود. روش کنترلی مبتنی بر هزینه بعنوان یک معیار مناسب بای کنترل توان اکتیو/راکتیو واحدهای DG در یک سیستم توزیع ارائه می گردد



خرید فایل


ادامه مطلب ...

ترجمه مقاله یک الگوریتم تکاملی مرکب بهینه مبتنی بر الگوریتم های PSO و HBMO برای بازآرایی فیدر توزیع با چند تابع هدف

ترجمه مقاله یک الگوریتم تکاملی مرکب بهینه مبتنی بر الگوریتم های PSO و HBMO برای بازآرایی فیدر توزیع با چند تابع هدف

چکیده- این مقاله یک الگوریتم تکاملی قدرتمند برای حل مساله باز آرایی فیدر توزیع(DFR) با چند تابع هدف ارائه می دهد. هدف اصلی DFR مینیمم کردن تلفات توان، انحراف ولتاژ گره ها، تعداد دفعات کلید زنی و متعادل کردن بارها در فیدرها می باشد. بخاطر این حقیقت که اهداف متفاوتند و غیر قابل اندازه گیری حل این مساله با روش های قدیمی که تنها یک هدف را بهینه می کند دشوار می باشد. این مقاله یک روش نوین بر پایه نرم 3 در مساله DFR ارائه می دهد. در روش پیشنهادی، توابع هدف بعنوان یک بردار در نظر گرفته می شوند و هدف ماکزیمم کردن فاصله (نرم 2) بین بردار تابع هدف و بدترین بردار تابع هدف می باشد در حالیکه قیود ارضا شوند. از آنجاییکه DFR پیشنهادی یک مساله بهینه سازی غیر قابل تفکیک وچند هدفه می باشد یک الگوریتم تکاملی مرکب (EA) بر پایه بهینه سازی مرکب جفت گیری زنبور عسل(HBMO) و بهینه سازی دسته اجزا (ذرات) مجزا (DPSO) ،که HBMO- DPSO نامیده می شود، برای حل آن اعمال می گردد. نتایج روش بازآرایی پیشنهادی با پاسخ های بدست آمده از دیگر روش ها مقایسه گردیده است، DPSO و HBMO اصلی بر روی سیستم های آزمایش توزیع مختلف انجام پذیرفته است.

کلیدواژگان: بهینه سازی جفت گیری زنبور عسل(HBMO)، باز آرایی فیدر توزیع(DFR)، بهینه سازی دسته اجزا (ذرات) مجزا (DPSO)

  1. 1. پیشگفتار

شرکت های برق دائما بدنبال فناوری هایی هستند که ممکن است عملکرد تحویل توان را تقویت کند. یکی از چندین موضوع مهم، کنترل تلفات توان می باشد. بازآرایی شبکه توزیع، فرآیندی است که ساختار توپولوژیکی توزیع را با تغییر حالت باز/بسته سکشن لایزرها (باز بندها) و وقفه دهنده ها در یک سیستم تغییر می دهد. تحت رژیم های کاری عادی، اهداف(objectives) از بار اضافی ترانسفورماتور، گرمای بیش از حد هادی جلوگیری می کند و ولتاژ غیر عادی را کاهش می دهد و همزمان تلفات توان حقیقی را در سیستم مینیمم می کند. از آنجائی که کاندیدهای مختلف برای ترکیبات کلید زنی در سیستم توزیع وجود دارد بازآرایی شبکه یک مساله بهینه سازی مرکب پیچیده با قیود غیر قابل تمایز می باشد[24-1]. در سال های اخیر، بسیاری از پژوهشگران مینیمم کردن تلفات را در حوزه بازآرایی فیدر در سیستم های توزیع مورد بررسی قرار داده اند. یکی از اولین مقالات در این زمینه توسط باک و مارلین [2] ارائه گردید. روش بهینه سازی مجزای شاخه و حلقه بر روی یک شبکه توزیع حلقوی انجام پذیرفت. با این حال، کاربرد آن بر روی سیستم های واقعی بخاطر تلاش های کامپیوتری بسیار راحت نمی باشد.از آن پس، روش های بسیاری پیشنهاد گردیده است. برای مثال، سیوانلار و همکارانش جستجوی اولیه ای بر روی بازآرایی فیدر بمنظور کاهش تلفات انجام دادند[3]. باران و وو مساله کاهش تلفات و متعادل سازی بار را بعنوان مساله برنامه نویسی عدد صحیح انجام دادند[4]. نرا و همکارانش و پارساد و رانجان از یک الگوریتم ژنتیک برای جستجوی ساختار با کمترین تلفات [12و5] استفاده کردند. شیر محمدی و هوانگ استفاده از روش پخش بار مبتنی بر یک الگوریتم تصادفی را برای یافتن ساختار با کمترین تلفات در شبکه های توزیع شعاعی انجام دادند [13و6]. شیانگ و رنه از یک روش حل که از شبیه سازی تابکاری بهره می برد برای جستجوی یک پاسخ غیر درونی قابل قبول استفاده کردند [8و7]. میگوئل و هرنان یک مدل عملی اقتصادی برای حل ساختار شبکه توزیع استفاده کردند [9]. دلبم و همکارانش یک رمزگذاری درختی و دو عملگر ژنتیکی برای بهبود عملکرد EA در مسائل بازآرایی شبکه پیشنهاد دادند[10]. داس یک روش فازی چند هدفه برای حل مساله بازآرایی شبکه ارائه داد [11]. نیکنام و همکارانش یک الگوریتم مرکب موثر برای بازآرایی فیدر توزیع چند هدفه بر پایه بهینه سازی جفت گیری زنبور عسل(HBMO) و روش فازی چند هدفه ارائه دادند [14]. علمائی و همکارانش یک هزینه مبتنی بر روش جبرانسازی برای بازآرایی فیدر توزیع با در نظر گرفتن تولیدات پراکنده پیشنهاد کردند [17-15].

نظر به اینکه توابع هدف بازآرایی فیدر توزیع یکسان و قابل اندازه گیری نمی باشند، حل مسائلی از این نوع با روش های قدیمی که برای حل مسائل تنها با یک هدف استفاده می گردید دشوار می باشد. از اینرو، در این مقاله یک فرمول نویسی جدید بر پایه روش نرم 2 برای بازآرایی فیدر توزیع با چند تابع هدف پیشنهاد می گردد. در روش پیشنهادی، توابع هدف برای مینیمم کردن تلفات توان اکتیو، تعداد دفعات کلید زنی و انحراف ولتاژ باس ها و متعادل کردن بار روی فیدر ها اعمال می گردد. در این روش، توابع هدف، مینیمم کردن فاصله بین بردار تابع هدف موجود و بردار بدترین تابع هدف می باشد. بردار اولی بر پایه نتایج بدست آمده از بازآرایی قبلی بدست می آید. متغیرهای کنترلی، وضعیت تای سوئیچ ها و سکشن لایزرها می باشند. از آنجاییکه ساختار سیستم توزیع بایستی شعاعی باقی بماند در حالیکه تعداد زیادی از کلید ها مورد استفاده قرار می گیرند متغیرهای کلید زنی طوری تعریف می گردند که وقتی یک تای سوئیچ بسته است یک کلید سکشن لایزر که تشکیل یک حلقه می دهد باز باشد.



خرید فایل


ادامه مطلب ...

ترجمه مقاله روش بهینه برای پاسخ پخش بار در شبکه¬های توزیع شعاعی

ترجمه مقاله روش بهینه برای پاسخ پخش بار در شبکه¬های توزیع شعاعی

چکیده

این مقاله روش جدید و دقیقی برای پاسخ پخش بار در شبکه­های توزیع شعاعی با حداقل آماده­سازی داده­ها را ارائه می­کند. مانند سایر شیوه­های موجود، گره و عددگذاری شاخه مستلزم ترتیبی بودن نیست. اگر ترتیبی نباشند روش ارائه شده مستلزم گره-فرستنده، گره-گیرنده و شماره­های شاخه نیست. روش پیشنهادی که دارای قابلیت به کارگیری مدل­سازی بار مرکب است از معادله­ی ساده به منظور محاسبه­ی مقدار ولتاژ استفاده می­کند. روش ارائه شده از مجموعه­ای از گره­های فیدر، شاخه­(ها) و زیر شاخه(ها) استفاده می­کند. هم­چنین اثربخشی شیوه­ی ارائه شده با استفاده از دو مثال با روش­های دیگر مقایسه می­شوند. نتایج پخش بار کامل برای نوع مختلفی از مدل­سازی­های بار نیز ارائه می­شود.

  1. مقدمه

عملکرد الکتریکی و پخش بار­های دقیق سیستم که تحت حالت ماندگار کار می­کند بصورت موثر مورد نیاز است که تحت عنوان مطالعه­ی پخش بار شناخته شده است که تلفات توان حقیقی و راکتیو سیستم و ولتاژها در گره­های مختلف سیستم را ارائه می­کند. با بازار رو به رشد در حال حاضر، برنامه­ریزی موثر تنها با کمک مطالعه پخش بارکارآمد تامین می­شود. شبکه توزیع ذاتا شعاعی است و دارای نسبت بالای R/X است در حالیکه سیستم انتقال ذاتا دارای نسبت X/R بالا و حلقوی است. بنابراین، متغیرهای آنالیز پخش بارسیستم­های توزیع متفاوت از سیستم­های انتقال است. شبکه­های توزیع تحت عنوان بد-شرط (ill-conditioned) مشهور هستند. روش گوس-سایدل (GS) معمولی و نیوتن رافسون برای شبکه­های توزیع نمی­تواند همگرا شود. تعدادی از روش­های پخش بارکارآمد برای سیستم­های انتقال در منابع موجود است. چند شیوه در منابع برای آنالیز پخش بارسیستم­های توزیع گزارش شده است. آنالیز سیستم­های توزیع حوزه­ی مهمی از تحقیقات است زیرا سیستم­های توزیع رابط نهایی بین سیستم قدرت انبوه و مصرف کنندگان است [1-3].

روش­های ارائه شده در [4، 5] علاوه بر پیچیدگی بالا بسیار زمان­بر بودند. کرستینگ و مندیو و کرستینگ یک روش پخش بار برای حل شبکه­های توزیع شعاعی با به­روزرسانی ولتاژها و جریان­ها با استفاده از جاروب­های پس­رو و پیش­رو با کمک تئوری شبکه­ی-نردبانی ارائه دادند. استیونس و همکاران نشان دادند که روش ارائه شده در [6، 7] دارای بالاترین سرعت نسبت به سایر روش­ها است اما نمی­توانست در پنج مورد از دوازده مورد مطالعه همگرا شود. شیرمحمدی و همکاران شیوه­هایی برای حل شبکه­های توزیع شعاعی با کمک کاربرد ولتاژ مستقیم قوانین کیرکشهف (Kirchoff) ارائه و یک طرح شماره­گذاری شاخه به منظور افزایش عملکرد مقدارنامی روش حل نشان می­دهند. هم­چنین آن­ها روش­هایشان را برای حل شبکه­های توزیع حلقوی ضعیف توسعه دادند. شیوه­ی آن­ها مستلزم آماده­سازی داده­های دقیق است. باران و وو راه­حل پخش بارشبکه­های توزیع شعاعی را با راه­حل تکراریِ سه معادله­ی اساسی با ارائه­ی توان حقیقی، توان راکتیو و مقدار ولتاژ ایجاد کردند. رناتو روشی برای به­دست آوردن راه­حل پخش بارشبکه­های توزیع شعاعی ارائه دادند که به محاسبه­ی معادل الکتریکی هر گره با جمع­آوری همه بارهای شبکه­ی تغذیه شده از طریق گره شامل تلفات می­پردازد و سپس با شروع از گره منبع، ولتاژ هر گره هدف محاسبه می شود. چیانگ سه الگوریتم مختلف برای حل شبکه­های توزیع شعاعی بر اساس روش باران و وو معرفی کرد. گوسوامی و باسیو روش تقریبی برای حل شبکه­های شعاعی و شبکه­های توزیع مش ارائه دادند که در آن هر گره در شبکه نمی­توانست به بیش از سه شاخه یعنی یک شاخه­ی ورودی و دو شاخه­ی خروجی متصل شود. آن­ها شاخه­ی ترتیبی و طرح شماره­گذاری گره را استفاده کردند. جاسمین و لی یک روش پخش بار برای بدست آوردن راه­حل پخش بارشبکه­های توزیع شعاعی با استفاده از سه معادله­ی اساسی نشان داند که نشان دهنده­ی توان حقیقی، توان راکتیو و مقدار ولتاژ است که توسط باران و وو ارائه شده بود. داس و همکاران روش پخش بار را با استفاده از همگرایی توان با کمک کدگذاری در گره­های جانبی و زیرجانبی (فرعی) ارائه کردند. در سیستم­های بزرگ پیچیدگی محاسبات افزایش می­یابد. روش آن­ها تنها برای شاخه­ی ترتیبی و طرح شماره­گذاری گره جواب می­دهد. آن­ها ولتاژ هر گره سر گیرنده را با استفاده از جاروب مستقیم محاسبه کردند. آن­ها تخمین اولیه­ی تلفات توان اولیه را برابر با صفر قرار دادند. رحمان و همکاران روشی برای راه­حل پخش بار بهبود یافته­ی شبکه­های توزیع شعاعی ارائه کردند. آن­ها معادله­ی ولتاژ از مرتبه­ی چهار ارائه کردند. قوش و داس شیوه­ی پخش بار برای حل شبکه­های توزیع شعاعی مبتنی بر روش با شاخه­های دورتر با استفاده از همگرایی ولتاژ ارائه کردند. آن­ها شروع ولتاژ مسطح را در نظر گرفته بودند. هم­چنین آ­ن­ها اثبات همگرایی را نشان داده بودند و همچنین نشان دادند که در نظر گرفتن ادمیتانس­های شارژینگ تلفات را کاهش می­دهد و پروفیل ولتاژ را بهبود می­بخشد. ایراد اصلی این روش این بود که گره­های دورتر هر شاخه را ذخیره می­کرد. این روش جریان برای هر شاخه را با اضافه کردن جریان­های بار از گره­های دورتر شاخه­ی مربوطه محاسبه می­کند. جمالی و همکاران شیوه­ی پخش بار را بر اساس طرح شماره­گذاری شاخه ترتیبی به منظور طراحی شبکه­ی توزیع با در نظر گرفتن بارهای تحقق یافته معرفی می­کنند. آراوینهابابو و همکاران پخش بار مبتنی بر ماتریس گره (BNPF) شاخه­ به گره کارآمد و ساده برای سیستم­های توزیع شعاعی نشان داده بودند و این روش برای گسترش پخش بار بهینه نامناسب بود که به نظر می­رسد روش NR بسیار مناسب بود. در این روش وجود هر زیر شاخته­ای تشکیل ماتریس را پیچیده می­کند. مخامر و همکاران روشی برای راه­حل پخش بارشبکه­های توزیع شعاعی با استفاده از شرایط ترمینال ایجاد کردند. افسری و همکاران شیوه­ی پخش بار بر اساس برآورد ولتاژ گره و با فرض جمع شدن بارهای گره­های شاخه­های فرعی و زیرشاخه­های آن­ها در گره ابتدای فیدر ارائه دادند. آن­ها سعی کرده بودند تا تنها زمان محاسبه را کاهش دهند. اما زمانی­که تعداد شاخه­ها و زیر شاخه­ها افزایش می­یابد محاسبات بسیار پیچیده می­شود. رانجان و همکاران یک تکنیک پخش بارجدید با استفاده از ویژگی همگرایی توان معرفی کردند. آن­ها ولتاژ هر گره را با استفاده از جاروب مستقیم توسط هما عبارت ولتاژ موجود در منابع محاسبه کرده بودند. آن­ها کل پخش بار هر شاخه را که به گره سر-گیرنده تغذیه می­شود محاسبه کرده بودند. هم­چنین شیوه­ی آن­ها مستلزم ذخیره­سازی گره­های دورتر هر شاخه بود. علاوه بر این آن­ها ادعا می­کنند اگر ترکیب بار معلوم باشد الگوریتم آن­ها به آسانی مدل­سازی بار مرکب را تطبیق می­دهد. ضعف اصلی این روش این بود که روش آن­ها مستلزم جستجوی تکراری برای اتصال گره سر گیرنده هر شاخه با گره­های دیگر بود. در روش مورد نظر، آن­ها مدعی شدند که روش ارائه شده برای شماره­گذاری تصادفی گره کار می­کرد اما در طرح شماه­گذاری شاخه جواب نمی­دهد. چاکرابورتی و داس بیان کرده بودند که همگرایی توان دارای قابلیت کار با مدل­سازی بار مرکب است. رانجان و همکاران همگرایی ولتاژ را به منظور کنترل ترکیب مختلف بار برای همان مثال استفاده شده در مرجع به کار بردند. تمام شیوه­های ارائه شده مستلزم تعداد شاخه، گره سر فرستند و گره سر گیرنده هستند. روش­های ارائه شده در [13، 15] نیازمند طرح عددگذاری ترتیبی هستند. در تمامی روش­های ارائه شده، مثال­های استفاده شده با طرح شمارش ترتیبی بود.



خرید فایل


ادامه مطلب ...

سمینار بهینه سازی کارایی مبتنی بر مدل تحلیلی در سیستم های بلادرنگ با محدودیت توابع زمانبهره وری

سمینار بهینه سازی کارایی مبتنی بر مدل تحلیلی در سیستم های بلادرنگ با محدودیت توابع زمان/بهره وری

فهرست

مقدمه. 4

معیارهای کارایی.. 4

مدل سیستم.. 5

معیارهای کارایی.. 6

محاسبه چهار معیار کارایی مطرح شده. 7

بهینه کردن معیار های کارایی مطرح شده. 9

ارزیابی های تجربی.. 9

نتیجه گیری.. 9

ویژگی های مقاله. 10

ادامه کار. 10


مقدمه

در این مقاله به بیان چهار معیار برای ارزیابی کارایی در یک سیستم بلادرنگ firm پرداخته شده است. تمامی این معیارها بر اساس بهره وری سیستم هستند. سپس با استفاده از روش های تحلیلی به محاسبه این معیارها پرداخته شده و در نهایت نیز توسط روش های عددی یک بهینه سازی برای آن ها ارائه شده است.

به طور کلی سیستم های بلادرنگ را می توان به سه دسته بلادرنگ سخت، بلادرنگ نرم و بلادرنگ firm تقسیم کرد. مسئله اساسی در سیستم های بلادرنگ سخت، موضوع برآورده شدن ضرب العجل ها می باشد، در حالی که در سیستم های بلادرنگ نرم و بلادرنگ firm فقط مسئله تمام شدن کارها قبل از فرا رسیدن ضرب العجل مطرح نیست، بلکه این که اجرای کار ها دقیقا در چه زمانی به اتمام می رسد نیز مهم است. اثر این موضوع را معمولا توسط توابع بهره وری یا TUF ها وارد مسئله می کنند.

TUF ها انواع مختلفی دارند، به طور مثال می توانند به صورت پله ای و یا غیر پله ای باشند و یا حالت صعودی یا نزولی داشته باشند، اما به طور کلی این توابع را می توان به دو دسته Unimodal و Multimodal تقسیم کرد. در انواع Unimodal اگر تابع بهره وری در یک لحظه به صورت نزولی شود، پس از آن دیگر نمی تواند حالت صعودی پیدا کند، به عبارت دیگر هر گونه کاهش در مقدار بهره وری نمی تواند با یک افزایش دنبال شود. اما در انواع Multimodal چنین محدودیتی نداریم. نکته دیگری که در مورد TUF ها وجود دارد این است که در اکثر بحث های مربوط به بهره وری معمولا هدف بیشینه کردن تابع TUF است و یا تضمین اینکه میزان این تابع از یک حداقل مقداری کمتر نشود. در معیار های کارایی مطرح شده در این مقاله هر دوی این موارد لحاظ شده است.



خرید فایل


ادامه مطلب ...

بهینه سازی آنتروپی شبکه های مقیاس آزادجهت استحکام در برابر خرابی های تصادفی

بهینه سازی آنتروپی شبکه های مقیاس آزاد

جهت استحکام در برابر خرابی های تصادفی

چکیده

بسیاری از شبکه ها با توزیع بسیار ناهمگن از پیوندهایشان شناخته می شوند، اینگونه شبکه ها مقیاس آزاد یا مستقل از مقیاس نامیده می شوند که توزیع درجه آن ها از فرمول ck p(k) ̴ پیروی می­کند. در این مقاله ، استحکام این شبکه ها در مقابل خرابی های تصادفی را با توجه به خصیصه ناهمگونی آنها بررسی می‌کنیم. آنتروپی توزیع درجه می‌تواند معیار متوسطی از ناهمگونی یک شبکه باشد. بهینه سازی استحکام شبکه های مقیاس آزاد با میانگنین اتصال ثابت در مقابل خرابی های تصادفی برابر است با بیشینه کردن آنتروپی توزیع درجه ها. با بررسی رابطه بین آنتروپی توزیع درجه ها و توان مقیاس[1] و کمینه اتصال، می‌توان به یک طراحی بهینه برای شبکه های مقیاس آزاد مستحکم در مقابل خرابی های تصادفی رسید. در انتها نتیجه می‌گیریم که آنتروپی توزیع درجه ها یک معیار موثر برای استحکام شبکه ها در مقابل خرابی های تصادفی است.

کلمات کلیدی : شبکه های مقیاس آزاد، نظریه اطلاعات، آنتروپی، خرابی‌های تصادفی.


[1] Scaling exponent

. مقدمه

بسیاری از سیستم های پیچیده توسط شبکه ای از تعاملات میان اجزاء آن مشخص می شوند. نشان داده شده است که بسیاری از شبکه ها در الگوهای ارتباطی خود به شدت ناهمگن هستند. با نگاه کردن به توزیع درجه ی p(k) که بیانگر، احتمال داشتن یک گره با k لینک است، به راحتی می توان ناهمگنی را تشخیص داد. اکثر شبکه های پیچیده را می توان با توزیع درجه ck p(k) ̴ توصیف کرد، که α ∈ (2,3). این شبکه ها شامل شبکه های اجتماعی (مانند شبکه های فیلم ـ بازیگر، شبکه های استناد علمی و شبکه های همکاری)، اینترنت و وب جهان گستر، شبکه های متابولیک، شبکه های تعامل پروتئین، و غیره هستند [1-5].

از زمانی که آلبرت و همکاران، مسئله ی خرابی های تصادفی و حملات عمدی در شبکه ها را مطرح کردند‍‍ [6]، علاقه شدیدی برای مطالعه انعطاف پذیری شبکه ها در مقابل خرابی گره ها و حملات عمدی بوجود آمده است [7-12]. ماگونی استراتژی های عمومی حمله در اینترنت را مورد بررسی قرار داده است [13]. مهم است که بفهمیم چطور می‌توان شبکه‌هایی طراحی کرد که هم در مقابل خرابی ها و هم در مقابل حملات بصورت بهینه مستحکم باشند.

بسیاری از محققان از نظریه نفوذ [1] برای بررسی این مسئله استفاده می کنند [14،7]. کسر p از گره ها به همراه اتصالاتشان بصورت تصادفی برداشته شدند، یکپارچگی می توانست به خطر بیافتد، برای آلفای بزرگتر از 3 و یک مقدار دقیقی از آستانه تحمل که با pc نشان داده می شود و هنگامی که مقدار p بزرگتر از آن شود شبکه تقسیم می‌شود به قسمت های کوچکتر که جدا از هم هستند. در زیر آن مقدار آستانه بحرانی، شبکه همچنان متصل است. برای α بین 2 و 3 شبکه ارتجاعی تر است و مقدار pc متمایل به 1 است [7]. تعدادی از پژوهشگران نیز، روی بهینه سازی شبکه جهت استحکام در مقابل هر دو عامل خرابی های تصادفی و حملات، بر اساس نظریه نفوذ، مطالعه می‌کنند [17-15].

یک ویژگی ساده و ذاتی در شبکه های مقیاس آزاد، توزیع ناهمگون پیوندهایشان است. بعلاوه، ناهمگونی شبکه ارتباط مستقیمی با داشتن حالت ارتجاعی در برابر حملات دارد. بسیاری از شبکه های دنیای واقعی، مقیاس آزاد و مستحکم در برابر خطاهای تصادفی هستند ولی در مقابل حملات هدفدار آسیب پذیرند. ناهمگونی را می توان توسط آنتروپی اندازه گیری کرد [19-18]. سوله و همکاران، از آنتروپی درجه های باقیمانده و اطلاعات متقابل، برای بررسی تعدادی از شبکه ها که ناهمگونی و درهمیدگی متفاوتی داشتند استفاده کردند [19].

در این مقاله، جدا از نظریه نفوذ، دیدگاه دیگری را بررسی می کنیم؛ آنتروپی توزیع درجه گره ها، برای توصیف ناهمگونی شبکه های مقیاس آزاد. برای طراحی بهینه شبکه های مقیاس آزاد، در برابر خرابی های تصادفی، ما استحکام شبکه در برابر خرابی های تصادفی را بیشینه می‌کنیم در حالی که هزینه را ثابت نگه می داریم، یعنی میانگین تعداد پیوندها به ازای هر گره ثابت می ماند. ما به این نتیجه می رسیم که استحکام شبکه های مقیاس آزاد در مقابل خرابی های تصادفی برابر است با بیشینه کردن آنتروپی توزیع درجه ها. با بهینه کردن آنتروپی توزیع درجه ها به طراحی بهینه ی شبکه های مقیاس آزاد در مقابل خرابی های تصادفی می رسیم.


[1] Percolation theory



خرید فایل


ادامه مطلب ...

پایان نامه کنترل بهینه فیدبک حالت نوعی از آونگ وارون برپایه الگوریتم پرندگان و مقایسه ی آن با روشهای بهینه سازی دیگر

پایان نامه کنترل بهینه فیدبک حالت نوعی از آونگ وارون برپایه الگوریتم پرندگان و مقایسه ی آن با روشهای بهینه سازی دیگر


چکیده:

در این پایان نامه، با در نظر گرفتن چند معیار مهم در طراحی کنترل کننده ها، از قبیل محل قرارگیری قطب های حلقه بسته و سرعت پاسخ دهی و بیشینه نیروی کنترلی و ادغام آن ها در قالب یک تابع هدف، مسأله پیدا کردن ماتریس های وزنی برای کنترل کننده LQR، به صورت یک مسأله بهینه سازی فرمول بندی شده است. سپس با استفاده از الگوریتم ژنتیک و بهینه سازی ازدحام ذرات یا PSO، الگوریتم تکامل تفاضلی، الگوریتم رقابت استعماری مقادیر بهینه ماتریس های وزنی محاسبه شده اند. روش مذکور بر روی سیستم پاندول معکوس دورانی اعمال شده است. نتایج شبیه سازی برتری چشم گیر روش بهینه سازی ازدحام ذرات را بر سایر الگوریتم های بهینه سازی بیان می دارد.

مقدمه:

کنترل بهینه شامل مجموعه ای از روش ها و ابزارهای ریاضی است که برای طراحی کنترل کننده های سیستم های دینامیکی مورد استفاده قرار می گیرند و در این روش ها، معیاری برای بهینگی در نظر گرفته می شود، و در طراحی کنترل کننده مورد نظر، این معیار بهینه می شود. غالبا معیار بهینگی در ارتباط با عواملی همچون عملکرد، میزان مصرف انرژی کنترلی، زمان پاسخگویی، و چگونگی حالت نهایی تعریف می شود. به عنوان مثال، طراحی کنترل کننده ای که بتواند در کمترین زمان ممکن حالت یک سیستم دینامیکی را به یک حالت مطلوب برساند، مسأله ای است که می تواند در قالب یک مسأله کنترل بهینه تعریف شود.

تنظیم کننده درجه دوخطی یا LQR، رویکردی است که در طراحی کنترل کننده خطی برای سیستم های خطی، به وفور مورد استفاده قرار می گیرد. کنترل کننده LQR دارای قوام مناسبی است و دارای حداقل حد بهره 6- دسیبل، حداکثر حد بهره نامحدود، و حد فاز 60 درجه است. گزینه های تنظیمی مربوط به کنترل کننده LQR شامل ماتریس های وزنی موجود در تعریف معیار بهینگی است که تعیین این ماتریس ها بسته به سلیقه طراح است. مقادیر این ماتریس ها به طور مستقیم بر روی کنترل کننده بهینه به دست آمده در روش LQR تاثیر دارند. بر روی چگونگی تاثیر مقادیر ماتریس های وزنی بر کیفیت کنترل کننده LQR به دست آمده، بحث های فراوانی انجام شده است که غالبا با نام اختصاصی ساختار ویژه در حوزه کنترل بهینه مطرح شده است.

در کنار الگوریتم ها و روش های کلاسیک که برای حل مسأله وزن دهی بهینه و تعیین ساختار ویژه کنترل کننده LQR ارائه شده اند، الگوریتم های بهینه سازی هوشمند و روش های محاسبات نرم نیز به مرور در حل این مسأله، مورد استفاده قرار گرفته اند. به عنوان مثال، الگوریتم ژنتیک، ترکیب الگوریتم ژنتیک و شبیه سازی تبرید، و الگوریتم مورچه ها برای حل مسأله تخصیص ساختار ویژه مورد استفاده قرار گرفته اند.

فصل اول

کلیات

1-1- هدف و اهمیت مسأله

در طراحی بسیاری از سیستم ها و حل بسیاری از مسایل نیاز داریم که از بین مجموعه وسیعی از جواب های ممکن یک جواب را به عنوان پاسخ بهینه انتخاب نماییم. اما به علت وسعت زیاد مجموعه جواب ها عملاً نمی توان تمام پاسخ ها را آزمود و باید این آزمایش را به صورت تصادفی انجام داد. از طرف دیگر این روند تصادفی باید به گونه ای انجام شود که به سمت بهترین جواب همگرا گردد. تئوری کنترل بهینه کوادرتیک خطی به این علت که به راحتی قابل پیاده سازی در مسائل مهندسی است و مبنای سایر تئوری های کنترلی می باشد، دارای اهمیت ویژه است. با این وجود در مورد خاصی که تابع هزینه یک تابع کوادرتیک خطی است، پاسخ بهینه به پاسخ رگولاتور کوادرتیک خطی همگرا می شود. روش LQR به طور گسترده در زمینه های مانند کنترل موتورهای القایی، کنترل میلنگ خودرو و غیره کاربرد دارد. سیستم مورد بررسی در این پروژه، نوعی از آونگ وارون می باشد.

آونگ وارون به طور وسیع به عنوان یک برنامه کنترلی جهت ارزیابی تئوری های کنترل مورد استفاده قرار می گیرد و یکی از سیستم های کلاسیک در دینامیک و کنترل است که به واسطه خواصی از قبیل غیرخطی بودن و ناپایداری ذاتی به عنوان یکی از مشکل ترین مسایل در مهندسی کنترل شناخته شده و به صورت وسیعی به عنوان یک محک برای تست الگوریتم های کنترل متفاوت مانند کنترل کننده های کلاسیک PID، شبکه های عصبی، کنترل کننده های فازی و… به کار می رود. از این سیستم شکل های مختلفی وجود دارد که از بین آنها می توان به ارابه، آونگ و آونگ های چرخشی افقط و عمودی اشاره کرد. هریک از اشکال مختلف آونگ وارون می تواند به صورت آونگ تکی و یا چندگانه وجود داشته باشد. این سیستم به عنوان یکی از سیستم های پایه آزمایشگاه های کنترل شناخته می شود.

در این پروژه به طراحی کنترلر LQR برای سیستم مورد نظر می پردازیم و با استفاده از الگوریتم بهینه سازی ازدحام ذرات ماتریس های وزنی مناسب به منظور طراحی کنترلر LQR مطلوب انتخاب می نماییم. و آن را با دیگر روش های بهینه سازی معمول مقایسه می نماییم. مسئله اساسی اینست که بهترین ماتریس های وزنی را چنان تعیین کنیم که وضعیت مطلوب سیستم کنترلی را در کمترین زمان ممکن برآورده سازند. در این پروژه استفاده از روش الگوریتم بهینه سازی ازدحام ذرات برای تعیین ماتریس های وزنی پیشنهاد می شود و نشان خواهیم داد که نتایج به دست آمده نیازهای سیستم کنترلی و مشخصات مطلوب سیستم را برآورده می سازند و برتری های روش مذکور را بر الگوریتم های بهینه سازی دیگر بررسی خواهیم کرد.



خرید فایل


ادامه مطلب ...

بررسی و بهینه سازی ماشین های آسنکرون

بررسی و بهینه سازی ماشین های آسنکرون

موتورهای اسنکرون یا القایی که جزء موتورهایACتقسیم بندی می شوند در صنعت و ابعاد مختلف زندگی رواج فراوان یافته که علت آن هم سادگی ساخت ،قدرت بالا؛ارزان بودن و همچنین سهولت تعمیرات می باشد(این موتورها فاقد جاروبک و مساله کموتاسیون هستند).جهت کنترل سرعت این موتورها می توان از درایو با قابلیت تغییر فرکانس بهره گرفت.

فهرست مطالب

چکیده. 1

طبق محاسبات.. 2

رتور سیم بندی شده:6

رتور قفس سنجابی:7

لغزش:9

مدار معادل رتور:11

تلفات در موتورهای القایی.. 15

دیاگرام توازن قدرت در موتور های القایی.. 18

گشتاور در حالت های مختلف.. 21

بدستآوردن رابطه گشتاور. 23

نمودار گشتاور سرعت موتور. 25

گشتاور ماکزیمم در موتور القایی.. 27

کنترل مشخصه گشتاور سرعت موتور القایی.. 29

کنترل ولتاژ تغزیه. 30

روش های کنترل مقاومت رتور موتور القایی.. 31

راه اندازی موتورهای القایی.. 38

انواع راه اندازی موتورهای القایی.. 38

اتو ترانسفورماتور:40

ستاره،مثلث:41

کنترل مقاومت رتور:42

کنترل مقاومت استاتور:43

کنترل سرعت موتورهای القایی.. 45

کنترل فوران:46

کنترل همزمان ولتاژ و فرکانس:46

کنترل سرعت توسط کنترل تریستوری:48

روش دالاندر:49

اثر هارمونیک ها بر عملکرد موتور القایی.. 50

کنترل مدرن موتور های القایی.. 53

فاصله درایو تا موتور. 57

انتخاب بهینه موتور. 57

محاسبه گشتاور بار. 58

ابعاد و اندازه موتورها:60

منابع :64



خرید فایل


ادامه مطلب ...