خرید و دانلود فایلهای علمی

انواع تحقیق پروژه پاورپوینت مقاله و سایر فایلهای مجاز

خرید و دانلود فایلهای علمی

انواع تحقیق پروژه پاورپوینت مقاله و سایر فایلهای مجاز

تحقیق آب سطحی

آبهای سطحی

فهرست و قسمتهایی از متن:


آب سطحی شامل آب باران، پساب، رودخانه دائمی و مانند آن‌ها می‌باشد. فعالیت‌های انسان می‌تواند منجر به افزایش میزان ترکیبات موجود در آب سطحی شوند.به عنوان مثال، فاضلاب‌های حاوی مواد آلی که به آب سطحی اضافه می‌شوند. بنابراین تشخیص کیفیت آب‌های سطحی و اثرات فعالیت‌های انسان بر روی کیفیت آب‌ها از اهمیت بالایی برخوردار است. منظور از کیفیت آب خصوصیات فیزیکی، شیمیایی و بیولوژیکی آن می‌باشد. پارامتر‌های فیزیکی شامل رنگ، بو، درجه حرارت، مواد جامد، کدورت، روغن و چربی می‌باشد. پارامتر‌های شیمیایی مربوط به مواد آلی شامل BOD ( اکسیژن مورد نیاز بیوشیمیایی)، COD ( اکسیژن مورد نیاز شیمیایی)، TOC ( کل کربن آلی) و TOD ( کل اکسیژن مورد نیاز) می‌باشد. پارامتر‌های شیمیایی غیر آلی شامل شوری، سختی، PH، اسیدی بودن، قلیائیت، موادی شامل آهن، منگنز، کلراید‌ها، سولفاتها، سولفید‌ها، فلزات سنگین، نیتروژن و فسفر‌ها می‌باشد و پارامتر‌های بیولوژیکی شامل کلیفرم‌ها، کلیفرم‌های مصنوعی، پاتوژن‌های ویژه و ویروس‌ها می‌شوند(Canter, L.W., 1996). ...

....

مطالب:

منابع آب‌های سطحی

تصفیه آبهای سطحی

دید کلی

ترکیب فیزیکی آب خام

هدف تصفیه

مشکلات نگهداری بعضی ذرات: انعقاد ، هماوری

مشکلات ویژه ناشی از پلانکتونها

مشکلات ناشی از آلوده کننده کوچک

روشهای مقابله با نقش زیانبار آبهای سطحی

نگاه اجمالی

روشهای مقابله با سیل

روشهای مقابله با فرسایش

افزودن به چسبندگی مصالح منفصل

ایجاد پوشش محافظ

ایجاد رسوبگیر

رابطه آب زیر زمینی و آب سطحی

منابع



خرید فایل


ادامه مطلب ...

سمینار برق روش های شارژ متقارن مبدل های چند سطحی کاسکاد

سمینار برق روش های شارژ متقارن مبدل های چند سطحی کاسکاد

لطفا از این پروژه در راستای تکمیل تحقیقات خود و در صورت کپی برداری با ذکر منبع استفاده نمایید.

مقدمه

مبدل های چند سطحی اولین بار در سال 1975 معرفی شدند. با توجه به افزایش تقاضا برای مبدل های با توان بالا، ولتاژ بالا و همچنین با در نظر گرفتن اینکه کلیدهای نیمه هادی نمی توانند در ولتاژها و توان های با رنج های بالا کار کنند تمایل به استفاده از مبدل های چند سطحی افزایش یافته است. گسترش استفاده از انرژی های نو و تجدیدپذیر مانند پیل های سوختی، سلول های خورشیدی و غیره… که عموماً دارای سطح ولتاژ dc با مقدار پایینی هستند استفاده از مبدل های چند سطحی را به عنوان یک تکنولوژی جدید برای تبدیل این انرژی ها به شکل موج با دامنه دلخواه بیشتر افزایش داده است. در حال حاضر توجه به مبدل های چند سطحی بیشتر و بیشتر شده است و این نوع مبدل ها پتانسیل خوبی برای توسعه و گسترش دارند.

یک مبدل چند سطحی به عنوان یک مبدل الکترونیک قدرت وسیله ای است که می تواند یک شکل موج پله ای دلخواه ولتاژ / جریان ac را با استفاده از چندین منبع ولتاژ / جریان dc به عنوان ورودی تولید نماید. براساس این تعریف مبدل های چند سطحی به دو دسته اصلی تقسیم می شوند:

– مبدل چند سطحی از نوع ولتاژ که در آن با استفاده از چندین منبع ولتاژ dc، ولتاژ ac مورد نظر تولید می شود.

– مبدل چند سطحی از نوع جریان که در آن با استفاده از چندین منبع جریان dc، جریان مورد نظر ac تولید می شود.

مهمترین نوع مبدل چند سطحی که بیشتر در مقالات تشریح می شود مبدل منبع ولتاژ است، اما در بعضی از کاربردها مانند فیلترهای اکتیو موازی، جبران کننده VAr و غیره نیاز به مبدل چند سطحی از نوع منبع جریان است.

2- مبدل چند سطحی از نوع ولتاژ

در این نوع مبدل ها ولتاژ خروجی مطلوب با استفاده از چندین منبع ولتاژ dc با اندازه های کوچک به عنوان ورودی ایجاد می شود. با افزایش تعداد منابع ولتاژ dc در سمت ورودی، می توان در خروجی مبدل، ولتاژ با شکل موج نزدیک به سینوسی تولید کرد. شکل (1) ساختار پایه یک مبدل چند سطحی از نوع منبع ولتاژ را نشان می دهد. این مدار از 4 کلید قدرت و یک منبع ولتاژ dc تشکیل شده است. در این مبدل هر کلید از یک IGBT و یک دیود با اتصال موازی – معکوس تشکیل شده است. در صورتی که بار مبدل، اهمی خالص باشد نیازی به دیودها نخواهد بود. این مبدل قادر است سه سطح ولتاژ (Vdc،- 0، +Vdc) در ترمینال های خروجی خود ایجاد کند. در صورتی که کلیدهای S1 و S4 روشن باشند ولتاژ خروجی مبدل Vdc+ و اگر کلیدهای S2 و S3 روشن باشند ولتاژ خروجی Vdc- خواهد شد. جهت ایجاد ولتاژ صفر در خروجی مبدل باید کلیدهای S1 و S2 و یا S3 و S4 به طور همزمان روشن شوند. توجه شود که اگر کلیدهای واقع در یک بازوی پل، به طور همزمان روشن شوند منجر به اتصال کوتاه شدن منبع ولتاژ dc ورودی خواهد شد. شکل(2) یک نمونه از ولتاژ خروجی این مبدل را نشان می دهد. مطابق شکل(2) در این مبدل هر عنصر کلیدزنی در هر سیکل از ولتاژ خروجی فقط یک بار سوئیچ می شود در نتیجه تلفات کلیدزنی به طور قابل ملاحظه ای کاهش خواهد یافت. این روش کلیدزنی تحت عنوان کلیدزنی فرکانس پایه معروف است.

3- مبدل چند سطحی از نوع جریان

در این نوع از مبدل ها، از منبع جریان به جای منبع ولتاژ در ورودی های مبدل استفاده می شود. توجه شود که معمولاً برای ساخت منبع جریان dc از سلف های بزرگ استفاده می شود در صورتی که در منابع ولتاژ از خازن های بزرگ استفاده می کنند. شکل(3) یک نمونه از مبدل های چند سطحی از نوع منبع جریان را نشان می دهد. مبدل نشان داده شده در شکل (3) قادر است سه سطح جریان (Idc+، 0، -Idc) را در خروجی خود تولید کند. نحوه عملکرد این مبدل مشابه مبدل نشان داده شده در شکل (1) است. با توجه به محدودیت هایی که در اندازه منابع dc جریان در عمل وجود دارد از این نوع مبدل ها، در عمل کمتر و یا استفاده نمی شود. بنابراین در این تحقیق، تمرکز بر روی مبدل های چند سطحی از نوع ولتاژ خواهد بود.



خرید فایل


ادامه مطلب ...

پایان نامه روشهای اندازه گیری و تمهیدات پایداری شیب در معادن سطحی

پایان نامه روشهای اندازه گیری و تمهیدات پایداری شیب در معادن سطحی

خلاصه :

علی رغم پیشرفتهایی که در اندازه گیری و پیش بینی صورت گرفته ، خاکریزه ها خسارات اجتماعی ، اقتصادی و محیطی سنگینی را در فضاهای کوهستانی وارد میکند. قسمتی از آن بخاطر پیچیدگی فرایندها، عدم موفقیت شیب رانش و اطلاعات ناکافی ما از مکانیزم های اساسی می باشد. در هر صورت بطور افزاینده ای کارشناسان برای تحلیل و پیش بینی پایداری شیب ، تعیین ریسک آن ، مکانیزمهای شکست پتانسیلی و سرعتهای آن مناطق پر خطر حاضر شده و برای تعیین اندازه های چاره ساز ممکن فراخوانده می شوند.

این مقاله به معرفی موضوع تحلیل پایداری شیب سنگ و هدفی که این تحلیل در بررسی مکانیزمهای ریزش بالقوه شیب دنبال میکند ، می پردازد . سپس به بحث در مورد پیشرفتهایی که در تحول تکنیکهای آنالیز شیب بر پایه کامپیوتر به نسبت روشهای معمولی مورد استفاده ، می پردازد . همچنین تعیین امکان اجرای سینماتیک برای مدهای معمول متفاوت به اضافه راه حلهای تحلیلی و تعادلی محدود برای فاکتورهای ایمنی در برابر ریزش شیب ارایه شده است .

قسمت دوم به معرفی روشهای مدلسازی عددی و کاربردهای آنها در تحلیل پایداری شیب سنگ می پردازد . بحث روی پیشرفتهای استفاده از کدهای مدلسازی عددی پیوسته و ناپیوسته متمرکز می شود . همچنین مشارکت و نفوذ فشارهای تخلخل و بارگذاری دینامیک ارایه شده اند . مراحلی که در تحلیل عددی اجرا می شوند با تاکید بر اهمیت یک تمرین خوب مدلسازی بازنگری می شوند .

معرفی

تحلیل پایداری شیب سنگ بطور معمول به سمت و سوی طراحی بنیادی و ایمن شیبهای حفر شده ( مانند حفاری گودال باز ، برشهای جاده ای و غیره ) و با شرایط تعادلی شیبهای طبیعی جهت داده می شود . تکنیک تحلیل انتخابی به هر دو ، شرایط سایت و حالت ریزش بالقوه با ملاحظات دقیقی که به قدرتهای متغیر ، ضعفها و محدودیتهایی که در هر روشی وجود دارد ، بستگی دارد .

بطور کل ، موضوعات ابتدایی آنالیز پایداری شیب صخره عبارتند از :

  • تعیین شرایط پایداری شیب صخره ؛
  • بررسی مکانیزمهای ریزش بالقوه ؛
  • تعیین حساسیت آسیب پذیری شیبها به مکانیزمهای تریگرینگ متفاوت ؛
  • آزمایش و مقایسه حمایتهای متفاوت و گزینه های مستحکم کردن ،
  • طراحی شیبهای حفر شده بهینه از نقطه نظرهای ایمنی ، معتبر بودن و اقتصادی ؛

مطالعات بررسی سایت باید شامل هرگونه مطالعات پایداری و شامل المانهای زمین شناسی و نقشه برداری ناپیوسته برای تهیه داده های ورودی لازم برای آنالیز پایداری باشد .

آنالیز سینماتیک

روشهای سینماتیک روی امکان پذیری ریزش های انتقالی بعلت تغییر لبه ها یا ضخامت " روز روشن " متمرکز می باشد . همچنین ، این روشها به استناد ارزیابی دقیق ساختار جرمی سنگ و هندسه دسته های ناپیوسته موجود که ممکن است در ناپایداری سنگ شرکت داشته باشند ، معتبر است . این مشارکت توسط نمودارهای استریونیت و یا کدهای مخصوص که به تشکیل سطح و لبه می پردازد ، انجام می شود . برای مثال ، برنامه DIPS ( راک سا ینس 2001 الف ) تجسم و تعریف امکانپذیری سینماتیک ویژگیهای گسسته را دارد . ( شکل 1 )

آنالیز تعادل محدود

تکنیکهای تعادلی محدود بطور معمول در تحلیل زمین لغزه ها ، جایی که جابجایی های انتقالی یا چرخشی بر روی سطوح ریزش جدا از هم اتفاق می افتد ، بکار می روند . این تحلیل ها آماده کردن فاکتور ایمنی و یک محدوده پارامترهای استحکام برشی در ریزش در حین تحلیل معکوس را بر عهده دارند . بطور کلی این روشها معمولیترین روش راه حلی پذیرفته شده در مهندسی مکانیک سنگ می باشند ولو اینکه بسیاری از ریزشها دارای تغییر شکل و شکافهای داخلی پیچیده باشند که مقاومت کمی در مقابل فرضیات بلوک صلب دو بعدی که با تحلیلهای تعادلی محدود مورد نیاز است ، دارد .

فهرست

قسمت اول

پایداری شیب با بهره گیری ازتکنیکهای عددی پیشرفته ....................................... 1

خلاصه ............................................................................................................................................ 2

فصل اول

1 . معرفی.................................................................................................................................3

فصل دوم

2 . روشهای قراردادی تحلیل شیب سنگ....................................................................... 6

1 – 2 . مقدمه................................................................................................................. 6

2 – 2 . آنالیز سینماتیک............................................................................................... 6

3 – 2 . آنالیز تعادل محدود.......................................................................................... 7

1 – 3 – 2 . تحلیل انتقالی................................................................................... 8

2 – 3 – 2 . تحلیل واژگونی................................................................................ 9

3 – 3 – 2 . تحلیل چرخشی............................................................................11

4 – 2 . شبیه سازهای ریزش سنگ.........................................................................16

فصل سوم

3 . شیوه های عددی تحلیل شیب سنگ.....................................................................19

1 – 3 . روش پیوسته...................................................................................................20

2 – 3 . روش غیرپیوسته.............................................................................................23

1 – 2 – 3 . شیوه اجزای ناپیوسته...................................................................24

2 – 2 – 3 . تحلیل تغییر شکل ناپیوستگی....................................................32

3 – 2 – 3 . کدهای جریان ذره.........................................................................33

3 – 3 . روش هیبریدی...............................................................................................36

فصل چهارم

4 . توسعه و کاربرد مدل چندگانه.................................................................................37

فصل پنجم

5 . پیشرفتهای آینده.......................................................................................................42

قسمت دوم

شبیه سازی پایداری شیب از طریق رادارجهت استخراج معادن به طور روباز................44

خلاصه...........................................................................................................................45

فصل اول

1 . مقدمه..........................................................................................................................46

1 – 1 . پیش زمینه....................................................................................................46

2- 1 . احتیاجات کاربر..............................................................................................46

3 – 1 . روش‌های ممکن........................................................................................46

1 - 3 – 1 . نمایشگر زمین لرزه...................................................................47

2 – 3 – 1 . رادار...........................................................................................47

3 – 3 – 1 . لیزر..............................................................................................48

4 – 3- 1 . عکس برداری................................................................................48

4 – 1 . انگیزه برای استفاده از رادار....................................................................49

5 – 1 . کارهای سابق بر این برای نشان دادن شیب با استفاده از رادار.......49

6 – 1 . شیب و محدودیت‌ها...............................................................................50

فصل دوم

2 . رادار با فرکانس مدرج..........................................................................................51

1 - 2 . مفهوم رادار با فرکانس مدرج.................................................................51

2 – 2 . پارامترهای رادار.....................................................................................51

3 – 2 . راه اندازی رادار.......................................................................................53

4 - 2 . بررسی اجمالی از اینترفرومتری راداری.............................................53

فصل سوم

3 . شبیه سازی یک سلول منفرد، توسط اسکن...................................................56

1 – 3 . مفهوم شبیه سازی مطلب......................................................................56

1 – 1 – 3 . تولید نقاطی برای شبیه سازی یک هدف مسطح............56

2 – 1 – 3 . محاسبه مجموع انعکاس فرکانس........................................57

3 – 1- 3 – مدل سازی از طریق صدا.......................................................58

4 – 1 – 3 . مدل سازی یک تغییر و جابجایی در فاصله......................58

2 – 3 . روش‌های به وجود آوردن محدوده فرکانس.....................................59

1 – 2 – 3 . لایه گذاری از پایین‌ترین نقطه برای افزایش رزولوشن تصویر......................................59

2 – 2 – 3 . حذف زواید (بزرگنمایی) برای پایین آوردن سطوح لبة فرعی....................................59

3 – 2 – 3 . پایه بندی برای حذف شیب فاز........................................60

3 – 3 . تعیین تغییر در فاصله........................................................................61

1 – 3 – 3 . انتقال به محدوده زمانی.......................................................61

2 – 3 – 3 . پیوستگی فازی.......................................................................62

3 – 3 – 3 . اختلاف فاز..............................................................................64

4 – 3 – 3 . ابهام در فاز اختلافی..............................................................65

5 – 3 – 3 . تعیین منطقه مورد نظر........................................................65

6 – 3 – 3 . حذف جهش‌های در مقایر فاز...........................................66

7 – 3 – 3 . محاسبه شیفت در دامنه....................................................66

4 – 3 . نتایج شبیه سازی...............................................................................68

5 -3 . نتیجه گیری...........................................................................................70

فصل چهارم

4 . قرائت‌های آزمایشگاهی سلول منفرد............................................................71

1 – 4 . پارامترهای رادار مورد استفاده برای قرائت‌ها...............................71

2 – 4 . اصطلاحات برای الگوریتم .............................................................73

1 – 2 – 4 . جمع کردن اسکن‌ها برای بهبود ..................................73

2 – 2 – 4 . انحنای ظاهری دیوار به واسطه پهنای اشعه بالا........73

3 – 2 – 4 . تغییر در پهنای باند بالای حذف خطاهای موجود در شیفت بزرگ .........................76

3 – 4. نتایج قرائت‌های تجربی ...................................................................76

1 – 3 – 4 . خطاهای شیفت کوچک.................................................77

2 – 3 – 4 . خطاهای شیفت بزرگ...................................................77

4 – 4 . نتیجه گیری ...................................................................................78

فصل پنجم

5 . شبیه سازی کل اسکن...................................................................................79

1- 5 . مفهوم شبیه سازی مطلب..................................................................79

1 – 1 – 5 . تولید نقاط برای شبیه سازی سطح دیواره.................79

2 – 1 – 5 . مدل سازی شیفت در دامنه ........................................79

2 – 5 . نتایج شبیه سازی انتقال جرم ....................................................81

1 – 2 – 5 . خطاهای شیفت کوچک..................................................82

2 – 2 – 5 . خطاهای شیفت بزرگ....................................................82

3 – 5 . نتیجه‌گیری ......................................................................................84

فصل ششم

6 . عدم ارتباط موقتی.........................................................................................85

1 – 6 . تعریف عدم ارتباط موقتی ............................................................85

2 – 6 . مقدار اطمینان – پیک منحنی ارتباط فاز .................................86

3 – 6 . عدم ارتباط موقتی به واسطه تغییر در زاویه .............................87

1 – 3 – 6 . مدلسازی تغییر در زاویه ...............................................87

2 – 3 – 6 . کاهش در ارتباط به واسطه تغییر در زاویه................87

3 – 3 – 6 . نتایج تشبیه سازی برای تغییر در زاویه ..................87

4 – 6 . عدم ارتباط موقت به واسطه شیفت موضعی............................91

1 – 4 – 6 . مدلسازی شیفت موضعی ...........................................91

2 – 4 – 6 . شیفت میانگین کل سلول .........................................91

3 – 4 – 6 . کاهش در ارتباط به واسطه شیفت موضعی.............92

4 – 4 – 6 . نتایج برای شبیه سازی برای شیفت موضعی.........93

5 – 6 . نتایج شبیه سازی برای شکست گوه‌ای .................................94

1 – 5 – 6 . مدلسازی شکست گوه‌ای ..........................................95

2 – 5 – 6 – نتایج شبیه سازی برای شکست گوه‌ای ...............95

6 – 6 . نتیجه‌گیری ...................................................................................96

1 – 6 – 6 . خلاصه نتایج شبیه سازی......................................97

2 – 6 – 6 . مقدار اطمینان بر عنوان اندازه پایداری ...............98

3 – 6 – 6 . تغییر در روش برای کاهش عدم ارتباط موقتی ........................................98

فصل هفتم

7 . تغییرات اتمسفری..................................................................................100

1 – 7 . اثر تغییرات اتمسفری.............................................................100

2 – 7 . شبیه سازی رفلکتور گوشه‌ای .............................................101

3 – 7 . شبیه سازی تغییر در شرایط اتمسفری ............................101

1 – 3 – 7 . تغییر در دما ..........................................................102

2 – 3 – 7 – تغییر در فشار........................................................102

3 – 3 – 7 . تغییر در فشار جزئی بخار آب .........................104

4 – 7 . تغییر اثرات اتمسفری با دامنه ...........................................106

5 – 7 . الگوریتم ارتقاء یافته..............................................................107

6 – 7 . نتایج برای شبیه سازی .......................................................107

7 – 7 . نتیجه گیری ...........................................................................108

فصل هشتم

8 . نتایج................................................................................................................110

1 – 8 . مرور فرضیه......................................................................................110

2 – 8 . خلاصه نتایج................................................................................112

3 – 8 . ارزیابی نهایی تکنیک ..................................................................112

4 – 8 . روش اسکن توصیه شده .............................................................113

منابع و معاخذ...........................................................................................................



خرید فایل


ادامه مطلب ...

مقاله عملیات حرارتی سطحی

مقاله عملیات حرارتی سطحی

بخشهای مختلفی از متن:

مقدمه ای بر عملیات حرارتی سطحی

عملیات حرارتی سطحی ، فرایندی است شامل دامنه وسیعی از روشها ( شکل 1 ) که برای افزایش سختی ، بهبود مقاومت به سایش ، افزایش استحکام خستگی و حتی مقاومت در برابر خورگی ، بدون ایتکه خواص درونی قطعه نظیر نرمی مغز و چقرمگی تحت تاثیر قرار گیرد به کار می رود . این مجموعه خواص ، مخصوصاً ترکیبی از سختی سطح و مقاومت در برابر نیروهای ضربه ای ، در ارتباط با قطعاتی نظیر شافتها و چرخ دنده ها که از یک طرف باید مقاوم در برابر سایش بوده و از طرف دیگر باید در برابر نیروهای ضربه ای اعمال شده در ضمن کار مقاوم باشن بسیار مفید است . به علاوه ، مزیت عمده عملیات حرارتی سطحی در مقایسه با عملیات حرارتی حجمی این است که ، ضخامتهای زیاد فولاد کم کربن و کربن متوسط که ممکن است در ضمن عملیات حرارتی حجمی ترک خوردن و یا اینکه تاب بردارند را به راحتی و با اطمینان می توان عملیات حرارتی سطحی کرد .

به طور کلی سه گروه کاملاً متفاوت از روشهای مختلف عملیات حرارتی سطحی وجود دارد . ( شکل 1 ) این سه گروه عبارتند از :

- روشهایی که شامل تغییر ترکیب شیمیایی سطح و یا نفوذ یک عنصر ( بین نشینی و یا جانشینی ) به داخل قطعه است . این روشها به عملیات حرارتی – شیمیایی یا نفوذی موسوم اند .

- روشهایی که شامل اصلاح و یا تغییر میکرو ساختار سطحی بوده و به هیچ وجه ترکیب شیمیایی سطح عوض نمی شود . این روشها به فرایندهای سخت کردن انتخابی یا موضعی موسوم اند .

...

کربن و نیتروژن دهی همزمان

در حالت کلی سه روش وجود دارد که کربن و نیتروژن را به طور همزمان وارد سطح قطعه می کند ، این سه روش عبارتند از :

- کربن – نیتروژن دهی

- نیتروژن – کربن دهی ستنیتی

- نیتروژن – کربن دهی فریتی

دو روش آخر بر اساس تشکیل لایه نازک سفید رنگ کاربونیترید اپسیلن ( ε ) است در حالی که در روش اول نیتروژن به عنوان سخت کننده آستنیت کربن داده شده استفاده می شود . گر چه دمای انجام هر سه فرایند بیشتر از دمای نیتروژن دهی است مع هذا مزیت اصلی هر سه روش امکان استفاده از آنها برای سخت کردن سطحی فولادهای ساده کربنی است .

کربن نیتروژن دهی :

فرایندی است که کربن و نیتروژن در فاز آستنیت فولاد وارد می شود . این فرایند از این نظر مشابه با کربن دهی است که در ضمن آن ترکیب شیمیایی آستنیت تغییر کرده و سختی زیاد سطح ناشی از سرد کردن سریع و تشکیل مارتنزیت است....



خرید فایل


ادامه مطلب ...

تحقیق آبیاری سطحی

تحقیق آبیاری سطحی


توضیح :

آبیاری سطحی که گروه بزرگی از روشهای آبیاری که آب بوسیله نیروی ثقل برزمین توزیع می‌شود وابسته است. آب بطور کلی در نقطه بالایی یا درلبه بالایی مزرعه وجود دارد اجازه داده می‌شود که توسط جریان بالادست سطح مزرعه را بپوشاند.

تأثیر یکنواختی آب آبیاری که به یکنواختی خاک بالا دست، کیفیت تسطیح، توپوگرافی زمین ، و کنترل اندازه‌های بین جوژیچه ها نفوذیری خاک و مدت زمانی کارایی ،بستگی دارد.

یک تعریف ار روش آبیاری سطحی این است که خاک به عنوان یک عامل انتقال دهنده‌ برخلاف (یک لوله یا مسبر هوا در آبیاری بارانی ) می باشد. خاک همچنین عمق نفوذ در زمان را کنترل می‌کند. (برخلاف میزان کارایی که توسط قطره‌چکان با آبپاش کنترل شده است) با وجود این، نفوذپری و خصوصیات پیشروی مزرعه آبیاری شده سطحی با زمان تغییر می‌کند، و آن را برای پیش‌بینی و پیشنهاد مدیریت‌‌ها غیرممکن می سازد.) آبیاری که توسط مدیریت مزرعه کنترل می شود ، برای آبیاری سطحی نسبت به سیستم‌های مکانیزه که با مدیریتهای پیچیده تجهیز و طراحی شده ‌اند بسیار مهم تر است.

روشهای آبیاری سطحی به 2 گروه کلی تقسیم می‌شوند:

آب حرکتی و دریاچه‌ای(pond)و غرقابی

آب حرکتی احتیاج به مقدار رواناب برای اطمینان از کفایت نفوذ د رانتهای پایینی مزرعه دارد. سیستم‌های جریان برگشتی آب اضافی که اغلب مورد نیاز هستند، توسط قانون در مقابل رواناب از مزرعه ها ممنوع شده‌اند.

آنها همچنین لوازم باارزشی برای کاهش کارگران و افزایش یکنواختی فراهم می‌آورند در صورتی که به درستی طراحی شده باشند . جد.ول 1-3 لیستی از روشهای آبیاری سطحی که دراین فصل شرح داده می‌شود را توضیح داده است.

انواع روشهای آبیاری سطحی

کرت:

آبیاری کرتی یک نوع روش غرقاب آبیاری است که آب را در زمین‌های مسطح که توسط دیواره‌هایی محصور شده است بکار می برد (شکل 1-3) . سطح خاک همیشه غرقاب نگه داشته می شود. . روانابی وجود ندارد زیرا آب در سطح آنقدر نگه داشته می شود که نفود کند. مناطقی که بارندگی دارند باید توسط زهکشیهایی که آب اضافی را خارج می کنند مود حمایت قرار گیرند.

آبیاری کرتی با نامهای مختلفی شناخته می شوند، مانند level border , chech flaod- chech basin , check irr –dead - level irrو level – basin irr این روش از آبیاری می تواند برای محصولات ردیفی و زراعی استفاده شود، که اغلب قابل عوض شدن هستند، بابسته صاف و پهن . همچنین برای درختان و باغ مو نیز استفاده می شود. میزان نفوذ در خاک باید با هرکرت یکسان باشد همانگونه که یکنواختی نفوذ بسیار حساس به تغییرات میزان نفوذ است که تنها لازم نیست که مستطیلی یا مستقیم باشند و دیواره‌ها لازم نیست که دائمی باشند ، تحت یک مدیریت خوب، حجم قابل تعیینی از آب می تواند به سرعت به کرت تخلیه شود.

1-3 tabale

تغییرات این روش شامل بستر گیاهی و صاف کرت می باشد. (جویچه‌ها و کانالها) محصولاتی که با موفقیت رشد کرده‌اند کرتهای تسطیح شده، تقریبا نامحدودند بجز مواردی که به خاک بستگی دارد. بستر کرتها بطور معمول برای محصولات ردیفی که حتما باید از آب گرفتگی اجتناب شود، استفاده می شود، با زمانی که عملکرد پایین برای شرایط بحرانی مورد نیاز است. بسترهای باریک و سخت یا بسترهای پهن اغلب برای محصولاتی چون سبزیجات ، خربزه ، پنبه، غلات، سیب‌زمینی، چغندرقند و بسیاری دیگر از محصولات ردیفی استفاده می شود.

کرتهای صاف مناسب ترین برای زراعت و محصولات ردیفی که به آب رفتگی برای مدت کم حساس نیستند ، می باشد. محصولات زراعی مانند یونجه ، گندم، نورگوم، پنبه و ... معمولا با این روش آبیاری می شوند. این گیاهان به خذف عناصر نمک و مشکلات شوری و سادگی کاربرد آبیاری سنگین کمک می کنند. محصولات باغی و باغستان مو، می تواند روی بسترها کشف شود. بستر کرت آبیاری بندی محصولات ردیفی که نیاز به کنترل رطوبت در داخل بسترها دارد مناسب است. برای مثال، بسترهای تسطیح شده به راحتی می توانند بطور یکنواخت مرطوب شوند و جوانه بزنند که ممکن است با روش جویچه ها بسیار سخت باشند. با وجود این اگر کرتها بسیار بزرگ باشند. میزان جریان زیادی در فاز پیشروی باید وارد شود که ممکن است ، باعث آبرفتگی محصولات و یا دانه ها شود.

محصولات در اثر آبگرفتگی آسیب می بینند، با استفاده از تسطیح خوب زیانشان کمتر می شود، آب باران و بارندگی اضافی بطور یکنواخت باعث ویران شدن کل منطقه می شوند و باعث زیان به محصول می گردد. با این وجود اگر رواناب نباشد، آب اضافی یا باران اضافی باعث آسیب به گیاه می شود. د رمناطقی که بارندگی زیاد است و نقوذ پذیری خاک کم می باشد سیستم سطحی باید مورد بررسی قرار گیرد.

کرتهای مزیتهایی در مقابل سایر روشهای آبیاری دستی دارند، سادگی وسایل ، نیاز به کارگر کم و توانایی استفاده درجریانهای ثابت، این روش عملکرد بالایی باخاکهای یکنواخت ، تسطیح دقیق، جریانهای بادی ؟ هیچ یک از موارد بالا لزوما مورد نیاز نیست اما باعث کارایی بهتر در کرتها می شود.

آبیار با ناظر باید مقدار جریان ورودی بداند، و عملکرد موردنیاز را بداند ، و از یکنواختی که با تعیین دور دقیق آبیاری بدست می‌آید و در دسترس است آگاه باشد. 6 دقیقه اشتباه در مدت 1 ساعت باعث ایجاد و 1% خطا می شود. یکنواختی به اندازه جویچه‌ها بستگی دارد، سرعت پیشروی و نامنظمی سطح خاک ، و میزان نفوذپذیری . میزان پیشروی با رابطه زیر تعریف می شود.

زمان آبیاری / زمان پیشروی= AR

«زمان آبیاری » فرصت زمان لازم برای نفوذ SMD می باشد. در عمل، بعنوان کمترین زمان در کرت یا جویجه می باشد. « فرصت نفوذ» زمانی است که آب با سطح خاک در یک نقطه مزرعه تماس دارد.

نیاز به کارگر برای آبیاری که جریان زیاد است بسیار کم است. با این وجود، کارگر نوبتی برای بعضی مکانهای دیگر قابل استفاده است. کار فیزیکی شامل بارکردن دریچه‌ها بدون تنظیم جریان است. برای سیستم طراحی شده خوب، مقداری مهارت و دانش توسط آبیار مورد نیاز است. اما ناظرباید دقیقا مراقب ارتباط بین میزان جریان، مدت و رطوبت حد کفایت خاک باشد.

با سیستم های کرتی مسطح، مخصوصا روی محصولات ردیفی با پشته و بستر سخت، کانالها ممکن است باز و از دو انتها با نهرهای درجه 2 به هم پیوسته باشد. حرکت آب در جویچه‌ها باسرعت پیشروی بالا در نهرهای درجه 2 جمع می شوند و در کانالهای با جریانهای پیشروی آهسته باز می گردند. این مورد غیریکنواختی زمان آب‌گرفتگی را کاهش می دهد. آب همچنین می تواند از 2 انتهای کرت مسطح تامین شود.



خرید فایل


ادامه مطلب ...

پایان نامه شبیه سازی هیدرولوژیک فرایند تشکیل جریان سطحی در حوضه آبریز

پایان نامه شبیه سازی هیدرولوژیک فرایند تشکیل جریان سطحی در حوضه آبریز


چکیده :

در هیدرولوژی کاربردی، پیش بینی پیک سیلاب یـک آبراهـه یـا رودخانـه بـه علـت وابسـتگی زمـانی و مکـانیمتغیرهای هیدرولوژیکی نظیر پارامترهای هواشناسی و تغییر پـذیری مکـانی توپـوگرافی، نـوع خـاک و کـاربریاراضی فرایندی بسیار پیچیده است. در مدل های هیدرولوژیکی یکپارچه برای دسترسی بـه یـک شـرایط سـاده ،خصوصیات حوضه آبریز در کل گستره آن بطور یک جا در نظر گرفته می شود و میـانگین یـا براینـد هـر یـک ازپارامترها برای ورود به مدل و محاسبات مورد استفاده قرار می گیرد. حـال آنکـه مـدل هـای تـوزیعی، تغییـراتمکانی کلیه خصوصیات حوضه آبریز را در سراسر آن مورد توجه قرار می دهنـد . در سـال هـای اخیـر اسـتفاده ازمدل های توزیعی در پیش بینی سیلاب و محاسبات بارش رواناب رشـد چشـمگیری داشـته اسـت. پیشـرفت درسرعت پردازش داده ها و بکارگیری مدل رقومی ارتفاعی(DEM) ، داده هـای نـوع خـاک و کـاربری اراضـی درقالب سامانه اطلاعات جغرافیایی (GIS) ، زمینه مناسبی را در تحقیقات هیدرولوژیکی برای نگرش مکانمنـد بـهمسائل مرتبط با چرخه هیدرولوژیکی و حل معادلات ریاضی حاکم بر آن فراهم ساخته است.

در مدل های هیدرولوژی با ساختار رستری، حوضـه توسـط شـبکه ای از سـلول هـا بـه اجـزاء کـوچکتر تقسـیممی شود و پارامترهای مدل بر پایه خصوصیات فیزیکی زمین، خاک و پوشش گیاهی که در هر سلول وجـود داردبه آن نسبت داده می شود. بارندگی و سایر داده های هواشناسی نیز بر هر سلول اعمال شده و رواناب حاصـله درمسیر جریان تا آبراهه روندیابی می شود. با این روش مدل توزیعی قادر اسـت فراینـدهای هیـدرولوزیکی حوضـه آبریز را با در نظر گرفتن تغییرات مکانی و زمانی پارامترها مورد پردازش قرار دهد.

در این تحقیق سعی بر آن است تا ضمن بیان معادلات حاکم بر مدل های توزیعی و نحوه عملکرد آنها، چگـونگیبکارگیری مدل توزیعی در برآورد سیلاب حوضه های آبریز بر پایه سامانه اطلاعـات جغرا فیـایی (GIS) و توانـاییاین مدل ها در پیش بینی سیلاب و محاسبات بارش رواناب مورد مطالعه قرار گیرد.

فهرست مطالب

عنوان صفحه

چکیده ..................................................................................................................................................................1

فصل اول: کلیات ................................................................................................................................................2

1-1- مقدمه ....................................................................................................................................................... 3

1-2- فواید مدل سازی به روش توزیعی ...................................................................................................... 4

1-3- معرفی مدل توزیعی .............................................................................................................................. 5

1-4- بیان ریاضی مدل توزیعی ..................................................................................................................... 7

1-5- فرایند تشکیل جریان سطحی ............................................................................................................. 9

1-5- 1- مازاد نفوذ ............................................................................................................................... 9

1-5- 2- مازاد اشباع ............................................................................................................................ 12

1-6- زبری هیدرولیکی ................................................................................................................................... 13

1-7- شبکه آبراهه ای و قدرت تفکیک مکانی ........................................................................................... 14

1-8- توزیع مکانی بارش ................................................................................................................................. 14

1-9- واسنجی مدل توزیعی ........................................................................................................................... 15

1-10- اهداف تحقیق ...................................................................................................................................... 15

فصل دوم: مروری بر تحقیقات گذشته .......................................................................................................... 17

2-1- مقدمه ....................................................................................................................................................... 18

2-2- استفاده از مدل های توزیعی در شبیه سازی فرایند تشکیل جریان سطحی ............................ 18

2-2- 1- سابقه تحقیق در زمینه مدل توزیعی GSSHA ............................................................. 21

2-3- سابقه تحقیق در زمینه مقایسه مدل های توزیعی و یکپارچه ...................................................... 23

فصل سوم: مبانی RS ،GIS وکاربرد آنها در مدل های توزیعی ............................................................... 25

3-1- مقدمه ....................................................................................................................................................... 26

3-2- سیستم اطلاعات جغرافیایی (GIS) ................................................................................................... 27

3-2- 1- تعریف ..................................................................................................................................... 27

3-2- 2- ساختار داده ها در GIS ....................................................................................................... 30

3-2- 3- تصویر سازی .......................................................................................................................... 31

3-2- 4- مدلهای ارتفاعی رقومی ....................................................................................................... 32

3-2- 5- استخراج شبکۀ آبراهه ها از DEM .................................................................................... 33

3-3- ماژولهای ارائه شده برای پردازش داده های هیدرولوژیک ............................................................. 34

3-3- 1- ماژولهای هیدرولوژیک ARC/INFO .............................................................................. 34

35 ....................... GRASS (Geographic Resource Analysis Support System) -2 -3-3

36 ............................................................................ HEC-GeoHMS و HEC-GeoRAS -3 -3-3

36 .............................................................................. CRWR-PrePro و HECPREPRO -4 -3-3

37 ......................................................... TOPographic ParameteriZation (TOPAZ) -5 -3-3

37 ................................................................... Watershed Modeling System (WMS) -6 -3-3

3-4- مدلهای توزیعی حوضه های آبریز ........................................................................................................ 38

39 ......................................................................................................................... AGNPS 98 -1 -4-3

39 ............................................................................................................................. CASC2D -2 -4-3

41 ................................................................................................................................ GSSHA -3 -4-3

41 .............................................................................................. HEC-HMS و HEC-RAS -4 -4-3

42 ............................................................. Systéme Hydrologiaue Européen (SHE) -5 -4-3

43 .................................................................................................................................. SWAT -6 -4-3

44 .................................................................................................................... TOPMODEL -7 -4-3

3-5- سنجش از دور ( RS ) ......................................................................................................................... 44

3-5- 1- تعریف ..................................................................................................................................... 44

3-5- 2- مزایای سنجش از دور ......................................................................................................... 45

3-5- 3- علائم طیفی پدیده ها ........................................................................................................ 46

3-5- 3-1- انعکاس طیفی گیاهان .............................................................................................. 47

3-5- 3-1-1- شاخص گیاهی تفاضلی نرمال شده ( NDVI ) ...................................... 48

3-5- 3-2- انعکاس طیفی خاک ................................................................................................. 49

3-5- 3-3- انعکاس طیفی آب ..................................................................................................... 50

3-5- 4- سیستم های سنجش از دور .............................................................................................. 51

3-5- 4-1- سری ماهواره های لندست ...................................................................................... 51

3-5- 5- تهیه تصاویر رنگی ترکیبی ................................................................................................. 52

3-5- 6- استخراج اطلاعات مفید از داده های دور سنجی .......................................................... 54

3-5- 6- 1- تفسیر چشمی ............................................................................................................ 54

3-5- 6- 2- تجزیه و تحلیل رقومی ............................................................................................ 54

3-5- 6- 2-1- طبقه بندی نظارت شده ..................................................................................... 55

3-5- 6- 2-2- روشهای طبقه بندی بدون نظارت .................................................................... 57

فصل چهارم: مدل سازی فرایند تشکیل رواناب سطحی ........................................................................... 58

4-1- مقدمه ....................................................................................................................................................... 59

4-2- مدل توزیعی GSSHA .......................................................................................................................... 59

4-2- 1- روندیابی صریح جریان در کانال .................................................................................... 62

4-2- 2- روندیابی جریان سطحی .................................................................................................. 64

4-2- 3- مدل نفوذ گرین و امپت ................................................................................................... 67

4-3- مدل یکپارچه کلارک ............................................................................................................................ 69

4-3- 1- روش نفوذ سازمان حفاظت خاک (SCS) ........................................................................ 70

4-3- 2- روندیابی رواناب ..................................................................................................................... 70

4-4- مدل شبه توزیعی کلارک توسعه یافته ............................................................................................ 72

4-5- شبیه سازی بارش در مدل توزیعی .................................................................................................... 74

4-5- 1- روش وزن دهی معکوس فاصله ......................................................................................... 75

4-6- واسنجی و اعتبارسنجی ......................................................................................................................... 77

4-6-1- تابع هدف ............................................................................................................................... 78

4-6-2- واسنجی دستی ..................................................................................................................... 79

4-6-3- واسنجی خودکار ................................................................................................................... 81

فصل پنجم: منطقه مطالعاتی .......................................................................................................................... 82

5-1- معرفی منطقه مطالعاتی ........................................................................................................................ 83

5-2- برآورد نفوذپذیری و شماره منحنی بصورت توزیعی ....................................................................... 84

5-2- بارش و سیلاب ....................................................................................................................................... 89

5-2- 1- دادههای همزمان بارش– رواناب ....................................................................................... 91

فصل ششم: شبیه سازی رواناب سطحی در منطقه مطالعاتی با استفاده از مدل های GSSHA،

101 ................................................................................................................................... Clark و ModClark

6-1- مقدمه ....................................................................................................................................................... 102

6-2- اجرای مدل توزیعی GSSHA در منطقه مطالعاتی ..................................................................... 102

6-3- اجرای مدل شبه توزیعی ModClark در منطقه مطالعاتی ....................................................... 108

6-4- اجرای مدل یکپارچه Clark در منطقه مطالعاتی .......................................................................... 111

6-5- واسنجی مدل ها ..................................................................................................................................... 113

6-5- صحت سنجی مدل ها ........................................................................................................................... 130

فصل هفتم ........................................................................................................................................................... 135

7-1- نتیجه گیری ............................................................................................................................................ 136

7-1- پیشنهادات ............................................................................................................................................... 137

منابع

منابع فارسی

منابع لاتین



خرید فایل


ادامه مطلب ...

تحقیق اثر دما و کنش سطحی در مکانیسم مختلف تولید و پیش‌بینی فعل و انفعالات سطحی سیستم‌های نفت‌خام، CO2 نفت شرایط مخزن

تحقیق اثر دما و کنش سطحی در مکانیسم مختلف تولید و پیش‌بینی فعل و انفعالات سطحی سیستم‌های نفت‌خام، CO2 نفت شرایط مخزن

قسمتی از متن:

خلاصه:

موضوع این مقاله مطالعه اهمیت نسبی دو مکانیسم تکمیلی همچون جابجایی با آب و آشام طبیعی، ارزیابی تأثیر حالت های مختلف دما و کشش سطحی درنرخ تولید و برداشت نهایی نفت ازآزمایشهای آزمایشگاهی است. مکانیسم تولید به وسیله آشام طبیعی به طور تاریخچه ای باتولید درمخازن شکاف دار طبیعی همراه شده است. با وجود این اثر ناهمگونی ها و کانالی شدن، که معمولاً درمخازن غیرشکاف دار آرژانتین وجود دارد، نشان می دهد که مکانیسم آشام بطور قابل توجهی به تولید نفت کمک میکند.

ارزیابی همزمان هر دومکانیسم (آشام و جابجایی) به وسیله آزمایشهای آزمایشگاهی مشکل است. بنابراین آزمایشهای جابجایی و آشام به طور جداگانه انجام شدند.آزمایشهای جابه جایی با آب در دمای اتاق و در انجام شدند. درحالیکه آزمایشهای آشام درو سانتیگراد انجام شدند. هر دو مطالعه درابتدا با آب و سپس با آب و سورفاکتانت، با رسیدن به شرایط با کشش سطحی پایین انجام شدند.

زمانیکه پدیده به طور زیادی به ترکیب مولکولی سیالها و سنگ وابسته است، آزمایشها تا حدممکن عیناً به صورت شرایط مخزن طراحی شدند و به این علت آب ، نفت و سنگ همان سازند استفاده شدند. سنگ استفاده شده برای این مطالعه به طور زیادی Water wet است.

آزمایشهای جابجایی با سورفاکتانت بااستفاده از دو روش مختلف انجام شدند. A) شروع تزریق سورفاکتانت همزمان با شروع جابجایی است. B)تزریق سورفاکتانت بعد از تزریق یک حجم منفذی (pv) ازآب شروع می شود.

روش دوم به طور کلی زمانیکه پروژه های EOR متعاقب پروژه های تزریق آب هستند به کار گرفته شد. مشاهده شد که با تجمع سورفاکتانت و مستقل اززمان شروع تزریق، برداشت نهایی نفت افزایش می یابد.

پدیده آشام طبیعی یک مکانیسم مهم تولید درسنگهای water wet بدست آمد. استفاده از سورفاکتانتها و افزایش دما اثر مکانیسم آشام را مطلوب میکند. بازده مکانیسم جابجایی با کاهش کشش سطحی و افزایش دما بهبود می یابد.

یک روش جدید که ناهمگونی نمونه را به کمک مکانیسم آشام مشخص می کند به وجود می آید. روش براساس یک آنالیز کیفی منحنی های آزمایشی برداشت نفت دربرابر حجم منفذی (pv) است.



خرید فایل


ادامه مطلب ...

دانلود مقاله بیماری سفیدک سطحی مو

در ایران برای اولین بار در فاصله سالهای 1251-1250 این بیماری در ارومیه دیده شده است. همچنین طبق اطلاعات کسب شده ابتدا در نواحی مرکزی ارومیه بروز کرده و بعدا به سایر نقاط شمالی و غربی و جنوبی و بعضی نقاط دیگر سرایت کرده است. Mildew این بیماری درنقاط مختلف ایران به نامهای سیاه بود (در اصفهان)،آق(در ارومیه)چور(در مراغه)، قاریا (در قزوین) وباد زدگی(در شهریار) نامیده می شود. سفیدک سطحی مو دراواسط قرن نوزدهم وارد اروپای غربی شد وکم کم در تمام قاره منتشر گردید. عامل بیماری به افتخارTucker ، باغبان انگلیسی که اولین بار در سال 1845 متوجه بیماری شد Oidium tuekeri  Berk نامگذاری شد. در سال 1847 برای اولین بار بیماری در فرانسه مشاهده شد وخسارت شدید به موستانها وفرآورده های آن وارد گردید. گزارش معتبری درباره اولین گزارش ومحل بروز بیماری درایران دیده نشد. بنا به مطالعات به عمل آمده بیماری سفیدک سطح ...


ادامه مطلب ...

تحقیق درمورد آبیاری سطحی

لینک پرداخت و دانلود *پایین مطلب *   فرمت فایل :Word ( قابل ویرایش و آماده پرینت )    تعداد صفحه58   فهرست مطالب   انواع روشهای آبیاری سطحی کرت: 1-3 tabale زمان آبیاری / زمان پیشروی= AR آبیاری نواری آبیاری نواری در امتداد خطوط تراز: نوارهای شیب ‌بندی شده: نوارهای هدایت شده: توضیح : آبیاری سطحی که گروه بزرگی از روشهای آبیاری که آب بوسیله نیروی ثقل برزمین توزیع می‌شود وابسته است. آب بطور کلی در نقطه بالایی یا درلبه بالایی مزرعه وجود دارد  اجازه داده می‌شود که توسط جریان بالادست سطح مزرعه را بپوشاند. تأثیر یکنواختی آب آبیاری که به یکنواختی خاک بالا دست، کیفیت تسطیح، توپوگرافی زمین ، و کنترل اندازه‌های بین جوژیچه ها نفوذیری خاک و مدت زمانی کارایی ،بستگی دارد. یک تعریف ار روش آبیاری سطحی این است که خاک به عنوان یک عامل انتقال د ...


ادامه مطلب ...

ارائه‏ی یک روش تحلیلی جدید برای تعیین رفتار پی‏های سطحی مستقر بر خاک مسلح

ارائه‏ی یک روش تحلیلی جدید برای تعیین رفتار پی‏های سطحی مستقر بر خاک مسلح 113صفحه   در این پایان ‏نامه به منظور تحلیل رفتار پی‏های سطحی مستقر بر خاک مسلح از یک روش ساده‏ی فیزیکی مبتنی بر مقاومت مصالح به نام «روش مخروط» استفاده شده است که در واقع به عنوان جایگزینی برای روش‏های حل دقیق که مبتنی بر تئوری الاستودینامیک سه‏بعدی هستند، به‏کار می‏رود. روش مخروط توانایی ترکیب پیچیدگی شرایط خاک‏های لایه‏ای و بررسی چگونگی انتشار امواج در این محیط‏ها را دارا می‏باشد و از دقت مهندسی قابل قبولی برخوردار است. به منظور مدل‏سازی خاک مسلح با ژئوسل با استفاده از روش مخروط، هر لایه ژئوسل و خاک پرکننده‏ی آن، با استفاده از یک مدل تجربی مرکب مبتنی بر تئوری تنش حلقه مدل‏سازی شد. در این مدل مرکب، خصوصیات ژئوسل و خاک پر‏کننده&rl ...


ادامه مطلب ...