خرید و دانلود فایلهای علمی

انواع تحقیق پروژه پاورپوینت مقاله و سایر فایلهای مجاز

خرید و دانلود فایلهای علمی

انواع تحقیق پروژه پاورپوینت مقاله و سایر فایلهای مجاز

مقاله توزیع پوآسون و نرمال

مقاله توزیع پوآسون و نرمال

توزیع پواسن

متغیرهای تصادفی دو جمله ای و فراهندسی ،‌موفقیت ها را در یک نمونه گیری تعیین می کند. ممکن است در پدیده هایی با روندی از موفقیت ها رو به رو شویم و آگاهی از تعداد موفقیت ها مورد نظر باشد. به مثالهای زیر توجه کنید.

در یک بازی بستکبال گلهایی را که تیم مورد علاقه به ثمر می رساند، روندی از موفقیت ها به دست می دهد.

تعداد دفعه هایی که قلاب ماهیگیری مورد حمله های ماهیان قرار می گیرد،‌روندی از موفقیت ها است.

تعداد تصادف ها در جاده ای مورد نظر، روندی از موفقیتها است.

ترسم خطوط اضافی در پارچه بوسیله یک ماشین پارچه بافی، روندی از موفقیت ها را به دست می دهد.

تعداد حبابهای موجود در شیشه های تولیدی یک کارخانه ساخت شیشه، روندی از موفقیت ها است.

مطالعه آماری تعداد موفقیت ها در بخشی از روند مورد نظر، اهمیت دارد. تعداد گلهایی که تیم مورد علاقه ما در نیمه اول به ثمر می رساند،‌تعداد دفعه هایی که به قلاب ماهیگیری در یک ساعت حمله می شود، تعداد تصادف های در طول تابستان،‌تعداد خطوط اضافی که در یک متر مربع ترسیم شده است و سرانجام، تعداد حبابهای موجود در 5 متر مربع شیشه تعداد موفقیت ها در بخشی از روند مربوطه است. نمونه گیری در اینجا به معنی گزینش آن بخش مورد نظر و شمارش تعداد موفقیت ها است. در مثال تعداد حبابها، هر قطعه شیشه 5 متر مربعی از تولید کارخانه یک نمونه به شمار می آید. در صورتی که X را تعداد موفقیت ها تعریف کنیم، مجموعه مقادیر X

X={و2و1و 0 …}

پیشامد (X=i) بیانگر قطعاتی است که در هر یک از آنها تعداد i حباب است،‌ P(X=i) درصد این قطعات را تعیین می کند. تعیین P(X=i) با روش نمونه گیری در عمل ناممکن است. از این رو چگونه می توان P(X=i) را تعیین کرد؟ (در قسمت 5 به این پرسش پاسخ خواهیم داد) به هر حال تابع چگالی زیر P(X=I) را ارائه می دهد.

...

توزیع پوآسون

در مواردی که در توزیع دو جمله ای n بزرگ باشد محاسبة احتمالات کاری پیچیده و مشکل می گردد. از طرفی توزیع دو جمله ای در مواردی صدق می کند که d=p-q کوچک باشد، و یا به عبارت دیگر q و p نزدیک به باشند. در مواردی که شرایط فوق صدق نکنند. (n بزرگ و احتمال ها نزدیک بهم نباشند) از توزیع های دیگری بجای توزیع دو جمله ای استفاده می گردد.

به طور کلی اگر احتمال وقوع پیشامدی (q) کوچک باشد و باشد آن پیشامد را نادر گویند. و منحنی توزیع دو جمله ای از حالت تقارن خارج بوده و مورب می گردد. چون در عمل با چنین وقایع نادری روبرو هستیم، داشتن یک توزیع تقریبی برای چنین مواردی ضروری است. چنین توزیعی بنام توزیع پواسون معروف است.

در توزیع دو جمله ای اگر تعداد دفعات آزمایش (n) بتدریج که p کوچک و کوچکتر می گردد، بزرگ و بزرگتر شود، مقدار (لاندا) ثابت می ماند. به عبارت دیگر توزیع دو جمله ای باینومییال وقتی n به سمت بی نهایت و p به سمت صفر میل کند و np ثابت بماند، به توزیع پویسون تبدیل می گردد. بنابراین احتمال وقوع X پیشامد در n آزمایش به صورت زیر محاسبه می گردد.

پایه لگاریتم طبیعی = 718828/2 e=

در این فرمول بجای np از حرف یونانی استفاده شده است. بنابراین توزیع پویسون یک حد از توزیع باینومییال است. در این مورد نیز ثابت می شود که میانگین و واریانس توزیع پویسون برابر با است.

مقدار به مفهوم زیر است:

یا به طور کلی بوسیله ماشین حساب حاصل می شود.

توزیع پویسون تنها به عنوان تقریب توزیع دو جمله ای بکار نمی رود،‌بلکه به عنوان یک الگو برای بررسی وقایعی که به طور تصادفی و به طور نادر در زمان و مکان توزیع می شوند نیز مورد استفاده واقع می شود. برای مثال می توان تعداد پنچری طایر در یک هفته، تعداد اصابت گلوله در یک هدف گیری، و تعداد موارد گزارش شده از یک بیماری کمیاب و غیره را نام برد. از توزیع پویسون در بازرسی و کنترل کیفیت کالاها، وقتی تعداد کالاهای معیوب نسبت به تولید کل کم باشد، به منظور محاسبة احتمال ها استفاده می شود.



خرید فایل


ادامه مطلب ...