مقاله میدان های الکترومغناطیسی
شما واقعاً بیشتر از آنچه که فکر می کنید می دانید- فضای نیروی مغناطیسی دار فقط یک اسم است که دانشمندان به یک دسته ای از انواع تشعشعات می دهند و همچنین وقتی که آنها می خواهند درباره آن تشعشعات به صورت گروهی صحبت کنند- تشعشع انرژی است که به سمت جایی مشخص مسیری را می پیماید و گسترش می یابد- تشعشعات قابل رویتی که از یک لامپ در خانه شما تشعشع می کنند یا امواج رادیویی که از سمت یک ایستگاه رادیویی می آیند در حقیقت I نوع از انواع تشعشعات نیروی مغناطیسی هستند- مثالهای دیگر تشعشعات الکترومغناطیسی امواج خیلی کوچک مغناطیسی، اشعه مادون قرمز و روشنایی ایجاد شده بوسیله اشعه ماورابنفش و همچنین اشعه x و اشعه گاما هستند- بیشتر اجسام دارای انرژی گرم هستند و حتی تشعشع دارای انرژی بالاتری نسبت به اجسام سرد ایجاد می کنند- فقط گرمای خیلی زیاد اجسام یا حرکت ذرات در یک سرعت بالا می تواند تشعشع انرژی بالا مانند اشعه x و اشعه گاما ایجاد کند- در اینجا تشعشعات متفاوت فضای الکترومغناطیسی وجود دارد و در عمل از کمترین به بیشترین انرژی هستند.
موج رادیویی: بله این شبیه امواج انرژی رادیویی است که ایستگاههای رادیویی منتشر می کنند که این انتشار به سوی هوا و برای تسخیر و توسعه و پخش از رادیو می باشد که شما می توانید صدای برگزیدگان خود مانند موزارت، مدونا و یا موسیقیهای کولیو را گوش کنید و لذت ببرید- امواج رادیویی همچنین توسط چیزهای دیگر از قبیل ستارگان و گازها در فضا فرستاده می شوند- شما قادر نیستید بفهمید که چه چیزی به این اجسام فرستاده می شود اما شما می توانی بفهمی که به چه میزان آنها ساخته می شوند.
امواج کوچک: آنها ذرت بو داده را در مدت زمان کمی می پزند- در فضا امواج کوچک توسط ستاره شناسان برای یادگیری درباره قواعد کهکشان راه شیری که راه شیری را در بر می گیرند به کار برده می شوند.
اشعه مادون قرمز: ما اغلب فکر می کنیم که این با چیزی شبیه گرما شروع میشود زیرا پوستمان را سرخ می کند - در فضا موقعیت امواج مادون قرمز بین ستاره ها میباشد.
قابل رویت: بله این مربوط به قسمتی است که چشمهای شما می بیند- امواج مرئی توسط هر چیز از آتش در حال تشعشع که به روشنایی ستاره ها و لامپها منجر میشود، تولید می شود- همچنین توسط حرکت سریع ذرات، ذرات دیگر گرم می شوند.
اشعه ماورابنفش: ما می دانیم که خورشید یک منبع ماورابنفش است- زیرا آن دارای اشعه های ماورابنفش است که پوستمان را می سوزاند- ستاره ها و دیگر اجسام داغ در فضا اشعه ماورابنفش می فرستند.
اشعه x: دکتر عمومی این اشعه را برای نگاه کردن در استخوانهای شما به کار میبرد و دندانپزشک برای نگاه کردن در دندانهایتان از اشعه x استفاده می کند- گازهای داغ موجود در دنیا نیز اشعه x می فرستند.
اشعه گاما: اجسام رادیویی فعال (بعضی از اجسام طبیعی ودیگر چیزهایی که توسط چیزهایی شبیه هسته کارخانجات قدرت ساخته می شوند) می توانند اشعه گاما بفرستند- ذره بزرگ شتاب دهنده را دانشمندان برای فهمیدن اینکه چه جسم ساخته شده ای می تواند اشعه گاما تولید کند، به کار می برند- اما بزرگترین مولدهای اشعه گاما همگی در دنیا وجود دارد- آن اشعه گاما را به طرق مختلف می سازد.
...
طیف الکترومغناطیسی یک محدوده وسیعی از امواج و فوتونهای انرژی دار را در بر می گیرد. نور برای دیدن جسمی که طول موجی به همان اندازه یا طول موجی کوچکتر از طول موج جسم دارد به کار برده می شود. نورهای تولیدی ALS که دورتر از اشعه ماورابنفش و نزدیک به اشعهx هستند محدوده طول موج آنها مستلزم مطالعه مولکولها و اتمها می باشد. در عکس به طیف الکترومغناطیسی نگاه کنید، اگر می توانید جوابی برای این سوالها پیدا کنید؟
1- کدامیک از امواج طیف الکترومغناطیسی دارای کمترین طول موج و کدامیک دارای بیشترین طول موج هستند؟
2- کدامیک از امواج طیف الکترومغناطیسی می تواند برای دیدن مولکولها به کار رود و کدامیک برای دیدن ویروس سرماخوردگی؟
3- چرا نمی توانید امواج مرئی را برای دیدن مولکولها به کار ببرید؟
بعضی حشرات مانند زنبورها می توانند امواج کوتاه نور را که انسان نمی تواند ببیند، ببینند. فکر می کنید چه امواج دیگری وجود دارد که زنبورهای عسل می توانند آن را ببینند؟
برگشت به بحث اولیه و کاوش در اختراعات این ذرات فیزیکی الزامی می باشد.
اشعه x: در اینجا ما یاد می گیریم که چطور یک ماشین اشعه x کار می کند، که شامل چگونگی تولید اشعه x و اینکه چرا آنها راهی را که انجام می دهند بسیار مورد استفاده می باشد.
نمونه گیرها: ما درباره نمونه گیرهای تصویری 3 بعدی یاد می گیریم که اشعه x را برای بدست آوردن عکس از استخوانهای شخص به کار می برند.
دستگاه امواج کوچک: این دستگاه مطمئن ترین و پر کاربردترین دستگاههای امروزی در منازل هستند که می توان فهمید که چگونه کار می کنند و برخی توهمات درباره خطراتشان را برطرف کرد.
ماوس خود را برای بالا یا پایین کردن بار منفی بکشید و سپس اجازه بدهید که نوسان کند. لغزنده را برای تنظیم چشمه کشش به کار ببرید. حرکت 1 بار باعث میشود که خطوط میدان برای تکان خوردن جذب آن شوند و بعد از زمانی بارهای دیگر شروع به حرکت می کنند. آن شبیه طنابی است که 2 سر آن متصل به صخره است- بله امواج شامل یک خطوط حرکت نیروی الکتریکی هستند و شما می توانی فکر کنی که با جذب بار لرزش بار شروع می شود.
توجه کنید که یک زمان معین برای حرکت امواج از یک ذره به ذره دیگر وجود دارد. وقتی که شما فرکانس آن را با تندی یا کندی حرکت آن افزایش می دهید ببینید چه اتفاقی می افتد. در نرخ حرکت بارها وقتیکه شما کشش را در فنر تنظیم می کنید، مسافت بین پیکها افزایش پیدا می کند یا برعکس؟ بله همه این چیزها قابل درک است، اما کمی سخت است که معتقد شویم که ذرات به کوچکی الکترونها می جهند، چطور یک الکترون متحرک ساخته می شود؟ یا به عبارتی چطور سرعت یا جهت حرکت تغییر می کند؟ این یک سوال خوب است درست می گویی کشش وجود ندارد پس چطور الکترونها حرکت می کنند. آیا آنها همیشه در حال حرکت اشعه تولید میکنند؟
...
ترجمه مقاله بررسی حالت گذرای الکترومغناطیسی و وفق¬پذیری حفاظت دیفرانسیل ترانسفورماتور قدرتUHVبراساس محدودیت هارمونیکدوم
چکیده
اتوترانسفورماتور به صورت نوع اصلی ترانسفورماتور UHV استفاده میشود، با این حال، مدل خطای داخلیاتوترانسفورماتور که در اکثر نرمافزارهای شبیهسازی ارائه شده است وجود ندارد. برای حل مسائل موجود در زمینهکاربردحفاظت دیفرانسیل ترانسفورماتور UHV، ابتدا یک اتوترانسفورماتور با سه سیمپیچ و با استفاده ازمدل ترانسفورماتورِمدار معادل مغناطیسی یکپارچه موجود در محیط نرم افزار EMTDCساخته میشود. علاوه بر این،مدل خطای داخلی ترانسفورماتور UHV ایجاد میشود. با توجه به مدلهای فوق، برقدار کردن و خطاهای داخلی برای اعتباربخشی حفاظت دیفرانسیلکه بخوبی اعمال شده است با از بین بردنهارمونیک دوم شبیهسازی میشود. میتوان اثبات کرد که نسبتهای هارمونیک دوم [جریانهای] هجومی[1]ترانسفورماتور قدرتUHVهمگی در برخی از حالاتبرقدار کردن زیر 10% هستند. در این حالت، نمیتوان از عملکرد نادرست حفاظت دیفرانسیلی با استفاده از 15% الی 20% نسبت هارمونیک دوم اجتناب کرد. به بیان دیگر، نسبت هارمونیک دوم جریان خطا در ابتدای وقوع خطا برای برخی از خطاهای ضعیف بسیار بزرگ است،که منجر به تاخیر زمانی کوتاه مدتِ عملیات حفاظتی میشود. این یافته (کشف) انگیزه تحقیق و توسعه طرح جدیدحفاظت اصلی ترانسفورماتورUHVرا ایجاد کرده است.
واژگان کلیدی
اتوترانسفورماتور، EMTDC، هارمونیک، جریان هجومی، خطای داخلی،UHV.
مساله تمایز بین جریان هجومی مغناطیسی و جریان خطا برای حفاظت دیفرانسیلی ترانسفورماتور قدرت وجود داشته است [1]-[4]، و این چالشکه در حفاظت ترانسفورماتور مافوق فوق فشار قوی (UHV)1000 کیلوولت نیز وجود دارد خیلی مهمتر است. محیط الکترومغناطیسی سیستمهای UHVدر مقایسه با سیستمهای قدرت فشار قوی (EHV) پیچیدهتر است. همچنین، وضوحا ساختار و پارامترهای ترانسفورماتور UHVمتفاوت از ترانسفورماتور EHV است. در این حالت، پیششرطهای استفاده از حفاظت دیفرانسیلی ترانسفورماتوردقیقا به مدلسازیترانسفورماتور قدرت UHV و بررسی مناسبحالت گذرای الکترومغناطیسی بستگی دارد.
اتوترانسفورماتور نوع اصلی ترانسفورماتور UHV است. با این حال، مدل اتوترانسفورماتور در بسیاری از نرم افزارهای شبیهسازی وجود ندارد. یک معیار متقابل (متناقض) معمول استفاده از ترانسفورماتور به جای اتوترانسفورماتور به هنگام اجرای شبیه سازی گذرای الکترومغناطیسی است [5]. در این حالت، میتوان اثر تزویج مغناطیسی را در نظر گرفت، اما ارتباط الکتریکی بین سمت اولیه و ثانویه را نمیتوانمد نظر قرار داد. مدل ارائه شده در [6]از شار پیوندی به عنوان متغیر حالتاستفاده میکند و غیرخطی بودن هسته ترانسفورماتور را هم در نظر میگیرد. این امر از نظر مفهومی روشن است، اما در عمل بیش از حد پیچیده است. در [7]، یک مدل جدید شبیهسازی گذرا برای اتوترانسفورماتور سهفاز شرح داده شده است، که در آن منابعِولتاژ و جریان کنترل شده با استفادهاز روش ذوزنقهای میراییِتغییر یافته ایجاد شده است که برای تشکیل مدل شبیهسازی مصنوعی استفاده شده است. در این مورد، هم کارایی و هم دقت شبیهسازیها بهبود یافتهاند. با این حال، اگر غیرخطی بودنِ امپدانس مغناطیسشوندگی در نظر گرفته شود این مدل منطقیتر خواهد بود. علاوه بر این، شبیهسازی گذرای الکترومغناطیسی در محیط الکترومغناطیسی UHVچالشهای جدیدی هستند، به خصوص هنگامیکه خط انتقال UHV با پارامترهای توزیعی (گسترده) در نظر گرفته شوند.
PSCAD/EMTDC نرمافزار شبیهسازی است که معمولادر زمینههای مختلف سیستمهای قدرت بکار برده میشود.به طور خاص، این نرمافزار برای شبیهسازیهای گذرای الکترومغناطیسی مناسب است. در این مقاله، مدل اتوترانسفورماتور UHV را براساسمدار معادل اتوترانسفورماتور سه سیمپیچه،و مدل خطاهای داخلی آن را با استفاده از مدلترانسفورماتور مدار معادل مغناطیسی یکپارچه (UMEC) که در نرمافزار EMTDCارائه شده است ایجاد میکنیم. این مدلِ جدید،منحصربفرد بودن ترانسفورماتور UHV و غیرخطی بودن هسته ترانسفورماتور را در نظر گرفته است. بر اساس این مدل، انواع آزمایشات شبیهسازی از جمله برقدار کردن، خطاهای اتصال-کوتاه داخل دورِ (سیمپیچ)، خطاهای اتصال کوتاه فاز به زمین، و خطاهای اتصال کوتاه فاز به فاز انجام شده است. در نهایت، شکلموجهای جریان را ارزیابی کردیم و مسائل مربوط به حفاظت دیفرانسیل ترانسفورماتور را با استفاده از طرح مسدودسازی هارمونیک دوم در حفاظتهای ترانسفورماتورUHV استفاده کردیم.
[1]Inrushes
پایان نامه تبدیل کنتور الکترومغناطیسی به کنتور دیجیتالی اعتباری
مقدمه:
درکنتورهای الکترومغناطیسی ودیجیتالی مورد استفاده درکشور٬ مشترکین پس ازمصرف برق٬هزینه پرداخت می کنند.قطع برق مشترکین به دلیل نپرداختن هزینه مستلزم حضور مامور شرکت برق در محل٬وپرداخت هزینه وصل مجدد توسط مشترک می باشد.
عدم پرداخت هزینه برق مصرفی توسط بعضی از مشترکین شرکت برق را برآن داشت تا سعی به دریافت هزینه قبل از مصرف کند.پروژه تبدیل کنتور الکترومغناطیسی به کنتور دیجیتالی اعتباری گامی است به سوی پیشبرد این هدف.
اساس کار دستگاههای اندازهگیری:
اساس کارکلیه دستگاههای اندازهگیری عقربهائی براساس تأثیرمیدان روی سیم حامل جریان است که مکانیسم آنها با هم فرق دارد. دردستگاه اندازهگیری با قاب گردان که در داخل میدان قرار گرفته دراثر عبورجریان(به نسبت جریان ورودی) عقربه حرکت خواهد نمود و برای اینکه با سرعت حرکت نکند از یک خفه کن استفاده می شود بنام آمپر یا دمفینگ.
نامگذاری دستگاه ها با توجه به مکانیزم آنها می باشد .مثلا اندکسیونی٬ قاب گردان٬ حرارتی٬ دینامیکی... که از شرح جزئیات دستگاهها صرفنظر می شود.
فهرست:
– مقدمه....................................................................................................2
فصل اول :
– اساس کاردستگاههای اندازهگیری ......…………….…......………........…….... 3
– اساس کارکنتورالقایی تکفاز..........................................................................5
فصل دوم :
–آشنایی با میکروکنترلرهای AVR .................................................................6
– مشخصات میکروکنترلرATmega16...........................................................9
– مشخصات میکروکنترلرATmega8...........................................................11
فصل سوم :
EEPROM – های خانواده AT24CXX..........................................................13
– ارتباط سریال دو سیمه I2C) یا (TWI...........................................................15
– صفحه کلید ماتریسی ................................................................................16
فصل چهارم :
– برنامه نرم افزاری شارژر.........................................................................17
– طرح شماتیک سخت افزارشارژر................................................................25
– برنامه نرم افزاری کنتور..........................................................................26
– طرح شماتیک سخت افزارکنتور..................................................................31