پایان نامه تحلیل رفتاری مغناطیسی ماشین القایی تحت ولتاژ هارمونیکی
چکیده:
به یک سیستم الکتریکی که قادر است سازگار با دیگر سیستم های الکتریکی انجام وظیفه کند و تداخلی در کار آنها ایجاد نکند و یا مستعد چنین وضعیتی نباشد «سازگار الکترومغناطیسی» با محیط اطلاق می شود. سازگاری الکترومغناطیسی یک موتور القایی از دو دیدگاه مطرح است. یکی اثر اختلال زای میدان مغناطیسی ناشی از آن در محیط پیرامون و دیگری سوء عملکرد آن که در اثر وجود منابع اختلالات الکترومغناطیسی ناشی از تجهیزات الکتریکی همچون «هارمونیک ها» ایجاد می شود. با استعمال روزافزون ادوات و تجهیزات الکتریکی و نیز مصرف تصاعدی انرژی الکتریکی این منابع الکترومغناطیسی مزاحم نیز افزایش یافته است. در این پایان نامه سازگاری الکترومغناطیسی موتور القایی، از دو دیدگاه یاد شده با استفاده از تحلیل اجزای محدود مورد بررسی قرار می گیرد. در حوزه دیدگاه اول، میدان های مغناطیسی پیرامون یک موتور القایی با مدلسازی سه بعدی موتور، محاسبه می گردد و با نوع دوبعدی آن مورد مقایسه قرار می گیرد. در حوزه دیدگاه دوم، یک مدل مناسب جهت تحلیل موتور القایی تغذیه شونده از ولتاژ غیر سینوسی معرفی می گردد. مزیت مدل فوق الذکر سادگی و دقت آن است. در انتها پایخ مدل پیشنهاد شده در حالات مختلف مورد بررسی قرار می گیرد.
مقدمه:
سازگاری الکترومغناطیسی یک موتور القایی از دو دیدگاه مطرح است. یکی اثر اختلال زای میدان مغناطیسی ناشی از آن در محیط پیرامون و دیگری سوء عملکرد آن که در اثر وجود منابع اختلالات الکترومغناطیسی ناشی از تجهیزات الکتریکی همچون «هارمونیک ها» ایجاد می شود.
در عمل وجود تجهیزات و عناصر با مشخصه غیرخطی و بخصوص ادوات الکترونیک قدرت در بخش های مختلف تولید، انتقال و مصرف موجب پیدایش اعوجاجات هارمونیکی در شکل موج های سینوسی جریان و ولتاژ در شبکه قدرت می شود و این اعوجاجات متاسفانه اثر نامطلوبی روی موتورهای الکتریکی که در صنایع به طور وسیعی مورد استفاده است، دارد.
نیاز به دقت بیشتر و بیشتر در طراحی و تحلیل ماشین های الکتریکی، استفاده از مدل های عددی جهت تعیین میدان های الکتریکی و مغناطیسی را ترویج داده است. به دلیل ساختار هندسی پیچیده ماشین و مشخصه های غیرخطی مواد بکار رفته در آن در بسیاری از موارد تنها روش حل عددی امکان پذیر است.
فصل اول
کلیات
با استعمال روزافزون ادوات و تجهیزات الکتریکی و نیز مصرف تصاعدی انرژی الکتریکی منابع الکترومغناطیسی مزاحم نیز افزایش یافته است.
بررسی آثار مخرب این منابع بر روی عملکرد تجهیزات الکتریکی مجاور نیز اهمیت بسزایی برخوردار است. ادوات الکترونیکی و کامپیوترهای شخصی امروزه در کلیه کارخانه ها و مجتمع های صنعتی مورد استفاده قرار می گیرد به طوری که سیستم های الکترونیکی اندازه گیری، حفاظتی و کنترلی به سرعت جایگزین تجهیزات مشابه مکانیکی و الکترومکانیکی می شوند. این موضوع تحت عنوان «سازگاری الکترومغناطیسی» که به صورت مختصر شده با EMC نیز بیان می گردد، مورد نظر بوده و ضرورت شناخت چگونگی عملکرد تجهیزات الکتریکی در کنار یکدیگر را بیش از پیش مطرح می سازد.
سازگاری الکترومغناطیسی یک موتور القایی از دو دیدگاه مطرح است. یکی اثر اختلال زای میدان مغناطیسی ناشی از آن در محیط پیرامون و دیگری سوء عملکرد آن که در اثر وجود منابع اختلالات الکترومغناطیسی ناشی از تجهیزات الکتریکی همچون «هارمونیک ها» ایجاد می شود.
در عمل وجود تجهیزات و عناصر با مشخصه غیرخطی و بخصوص ادوات الکترونیک قدرت در بخش های مختلف تولید، انتقال و مصرف موجب پیدایش اعوجاجات هارمونیکی در شکل موج های سینوسی جریان و ولتاژ در شبکه قدرت می شود و این اعوجاجات متاسفانه اثر نامطلوبی روی موتوهای الکتریکی که در صنایع به طور وسیعی مورد استفاده است، دارد.
نیاز به دقت بیشتر و بیشتر در طراحی و تحلیل ماشین های الکتریکی، استفاده از مدل های عددی جهت تعیین میدان الکتریکی و مغناطیسی را ترویج داده است. به دلیل ساختار هندسی پیچیده ماشین و مشخصه های غیرخطی مواد بکار رفته در آن در بسیاری از موارد تنها روش حل عددی امکان پذیر است. روش اجزاء محدود (FEM) روشی عددی است که برای این منظور مناسب است. این روش در سال 1940 پیشنهاد شد، اما برای اولین بار 10 سال بعد در زمینه طراحی های مرتبط با دانش هوانوردی و تحلیل سازه بکار گرفته شد. پس از گذشت سال ها، روش اجزای محدود به طور گسترده ای در تقریبا تمام مسائل فیزیک و ریاضی به کار گرفته شد. این روش قادر است تخمین خوبی از تحلیل عملکردی وسائل الکترومغناطیسی ارائه کند.
پروژه کارآموزی تنظیم کننده های ولتاژ
مقدمه :
در اکثر آزمایشگاههای برق از منابع تغذیه برای تغذیه مدارهای مختلف الکترونیکی آنالوگ و دیجیتال استفاده می شود . تنظیم کننده های ولتاژ در این سیستم ها نقش مهمی را برعهده دارند زیرا مقدار ولتاژ مورد نیاز برای مدارها را بدون افت و خیز و تقریباً صاف فراهم می کنند .
منابع تغذیه DC ، ولتاژ AC را ابتدا یکسو و سپس آن را از صافی می گذرانند و از طرفی دامنه ولتاژ سینوسی برق شهر نیز کاملاً صاف نبوده و با افت و خیزهایی در حدود 10 تا 20 درصد باعث تغییر ولتاژ خروجی صافی
می شود.
از قطعات مورد استفاده برای رگولاتورهای ولتاژ می توان قطعاتی از قبیل ، ترانسفورماتور ، ترانزیستور ، دیود ، دیودهای زنر ، تریستور ، یا تریاک و یا آپ امپ (op Amp) و سلف (L) و خازن (C) و یا مقاومت (R) و یا ICهای خاص را نام برد .
* عوامل موثر بر تنظیم ولتاژ :
عوامل مختلفی وجود دارند که در تنظیم ولتاژ در یک تنظیم کننده موثرند از جمله این عوامل را می توان ، تغییرات سطح ولتاژ برق ، ریپل خروجی صافیها، تغییرات دما و نیز تغییرات جریان بار را نام برد .
الف)* تغییرات ولتاژ ورودی :
در تمامی وسایل الکترونیکی و یا سیستم های الکترونیکی و مکانیکی و غیره و در تمامی شاخه های علمی طراحان برای اینکه یک وسیله یا سیستم را با سیستم های مشابه مقایسه کنند معیاری را در نظر می گیرند که این معیار در همه جا ثابت است .
در یک تنظیم کننده معیاری به نام تنظیم خط وجود دارد که میزان موفقیت یک تنظیم کننده ولتاژ در کاهش تغییرات ولتاژ ورودی را با این معیار می سنجند و به صورت زیر تعریف می کنیم :
فرمول (1ـ2)
که در آن ، تغییرات ولتاژ ورودی ، تغییرات ولتاژ خروجی ، ولتاژ خروجی متوسط (DC) می باشد .
ب)تغییرات ناشی از تغییر دما :
یکی دیگر از عاملهای تعیین کننده در یک تنظیم کننده ولتاژ خوب تغییرات ناشی از دماست .
معیاری که تغییرات نسبی ولتاژ را برحسب دما بیان می کند ضریب دمای تنظیم کننده نام دارد که آن را با T.C نشان می دهیم و بصورت زیر تعریف می شود :
(فرمول 2-2)
T.C = Temperature coefficient
در رابطه فوق ، تغییرات ولتاژ خروجی در اثر تغییرات دمای و مقدار متوسط (DC) ولتاژ خروجی است .
معمولاً TC برحسب (Parts - per - million) بیان می شود و به صورت زیر تعریف می شود .
(فرمول 3-2)
در زیر چند نمونه از مقادیر ، ، و ... برای بعضی از سری
IC های رگولاتور ولتاژ آورده شده است .
T.C |
|
| Input voltage range | Type | |
0.3% | 0.5% | 0.1% | Max | Min | S.F.C 2100m |
40 | 8.5 | ||||
0.3% | 0.1% | 0.1% | 40 | 8.5 | S.F.C 2200m |
0.3% | 1 | 0.056% | -8 | -50 | S.F.C 2204 |
Linear integrated circuits voltage regulators
ج)تغییرات ناشی از تغییر بار :
اکثر دانشجویان در آزمایشگاه با این مسئله روبرو شده اند که وقتی ما ولتاژی را از یک منبع می گیریم و با مالتی متر اندازه گیری می کنیم ( چه در حالت DC و چه در حالت ac ) وقتیکه به مدار وصل می کنیم مقدار آن با حالت بدون بار کمی اختلاف دارد ، دلیل آن تغییر بار است ، چون وقتی به مدار وصل نیست (بار) و وقتی به مدار وصل می شود بار تا مقدار خیلی زیادی کم می شود در حقیقت مقاومت بار تنظیم کننده ولتاژ ، مقاومت ورودی مداری است که از بیرون به آن متصل می شود و بنابراین می تواند تغییرات نسبتاً وسیعی داشته باشد .
پایان نامه بررسی اثرات هارمونیک های ولتاژ و جریان بر روی ترانسفورماتورهای قدرت
در این پایان نامه (پژوهش) به مطالعه ارتباط بین منحنی مغناطیس شوندگی هسته ترانسفور ماتور و ناپایداریهای هارمونیکی ناشی از آن می پردازیم .سپس انواع هارمونیک های ولتاژ و جریان و اثرات آنها را بر روی سیستم های قدرت ، در حالات مختلف مورد بررسی قرار می دهیم0 در قسمت بعد به بررسی چگونگی حذف هارمونیک ها در ترانسفور ماتور های قدرت با استفاده از اتصالات ستاره ومثلث سیم پیچی ها می پردازیم .و در نها یت نیز جبرانکننده ها ی استاتیک و فیلتر ها را به منظور حذف هارمونیک های سیستم قدرت مورد مطالعه قرار می دهیم.
کلمات کلیدی :
ناپایداری هارمونیکی ، منحنی مغناطیس شوندگی ، فیلترها ، سیستم قدرت ، هارمونیک ولتاژ و جریان ، جبرانساز استا تیک
فهرست مطالب
مقدمه1
فصل اول: شناخت ترانسفورماتور6
1-1 مقدمه7
2-1 تعریف ترانسفورماتور7
3-1 اصول اولیه7
4-1 القاء متقابل7
5-1 اصول کار ترانسفورماتور9
6-1 مشخصات اسمی ترانسفورماتور12
1-6-1 قدرت اسمی12
2-6-1 ولتاژ اسمی اولیه12
3-6-1 جریان اسمی12
4-6-1 فرکانس اسمی12
5-6-1 نسبت تبدیل اسمی13
7-1 تعیین تلفات در ترانسفورماتورها13
1-7-1 تلفات آهنی13
2-7-1 تلفات فوکو در هسته13
3-7-1 تلفات هیسترزیس14
4-7-1 مقدار تلفات هیسترزیس16
5-7-1 تلفات مس16
8-1 ساختمان ترانسفورماتور17
1-8-1 مدار مغناطیسی (هسته17
2-8-1 مدار الکتریکی (سیم پیچها17
1-2-8-1 تپ چنجر18
2-2-8-1 انواع تپ چنجر18
3-8-1 مخزن روغن19
مخزن انبساط19
4-8-1 مواد عایق19
الف - کاغذهای عایق20
ب - روغن عایق20
ج - بوشینکهای عایق20
5-8-1 وسایل حفاظتی21
الف – رله بوخهلتس21
ب – رله کنترل درجه حرارت سیم پیچ22
ج – ظرفیت سیلی گاژل23
9-1 جرقه گیر24
1-10 پیچ ارت24
فصل دوم: بررسی بین منحنی B-H و آنالیز هارمونیکی جریان مغناطیس کننده 26
1-2 مقدمه27
2-2 منحنی مغناطیس شوندگی27
3-2 پس ماند (هیسترزیس30
4-2 تلفات پس ماند (تلفات هیسترزیس32
5-2 تلفات هسته32
6-2 جریان تحریک33
7-2 پدیده تحریک در ترانسفورماتورها33
8-2 تعریف و مفهوم هارمونیک ها36
1-8-2 هارمونیک ها36
2-8-2 هارمونیک های میانی37
9-2 ناپایداری هارمونیکی مرتبط با هسته ترانس در سیستمهای AC-DC 37
10-2 واکنشهای فرکانسی AC-DC37
11-2 چگونگی ایجاد ناپایداری39
12-2 تحلیل ناپایداری40
13-2 کنترل ناپایداری41
14-2 جریان مغناطیس کننده ترانسفورماتور42
1-14-2 عناصر قابل اشباع42
2-14-2 وسایل فرومغناطیسی43
فصل سوم : تأثیر هارمونیکهای جریان ولتاژ روی ترانسفورماتورهای قدرت 46
1-3 مقدمه47
2-3 مروری بر تعاریف اساسی47
3-3 اعوجاج هارمونیکها در نمونه هایی از شبکه49
4-3 اثرات هارمونیک ها51
5-3 نقش ترمیم در سیستمهای قدرت با استفاده از اثر خازنها 52
1-5-3 توزیع هارمونیکهای جریان در یک سیستم قدرت بدون خازن 52
2-5-3 توزیع هارمونیکهای جریان در یک سیستم پس از نصب خازن 52
6-3 رفتار ترانسفورماتور در اثر هارمونیکهای جریان54
7-3 عیوب هارمونیکها در ترانسفورماتور54
1-7-3 هارمونیکهای جریان54
1) اثر بر تلفات اهمی54
2) تداخل الکترومغناطیسی با مدارهای مخابراتی54
3) تأثیر بر روی تلفات هسته55
2-7-3 هارمونیک های ولتاژ55
1) تنش ولتاژ روی عایق55
2) تداخل الکترواستاتیکی در مدارهای مخابراتی55
3) ولتاژ تشدید بزرگ56
8-3 حذف هارمونیکها56
1) چگالی شار کمتر56
2) نوع اتصال57
3) اتصال مثلث سیم پیچی اولیه یا ثانویه57
4) استفاده از سیم پیچ سومین57
5) ترانسفورماتور ستاره – مثلث زمین57
9-3 طراحی ترانسفورماتور برای سازگاری با هارمونیک ها58
10-3 چگونگی تعیین هارمونیکها59
11-3 اثرات هارمونیکهای جریان مرتبه بالا روی ترانسفورماتور 59
12-3 مفاهیم تئوری60
1-12-3 مدل سازی60
13- 3 نتایج عمل61
14-3 راه حل ها62
15-3 نتیجه گیری نهایی62
فصل چهارم: بررسی عملکرد هارمونیک ها در ترانسفورماتورهای قدرت 63
1-4 مقدمه64
2-4- پدیده هارمونیک در ترانسفورماتور سه فاز64
3-4 اتصال ستاره68
1-3-4 ترانسفورماتورهای با مدار مغناطیسی مجزا و مستقل 68
2-3-4 ترانسفورماتورها با مدار مغناطیسی پیوسته یا تزویج شده 71
4-4 اتصال Yy ستاره با نقطه خنثی72
5-4 اتصال Dy72
6-4 اتصال yd73
7-4 اتصال Dd74
8-4 هارمونیک های سوم در عمل ترانسفورماتور سه فاز74
9-4 سیم پیچ ثالثیه یا پایدارکننده76
10-4 تلفات هارمونیک در ترانسفورماتور77
1-10-4 تلفات جریان گردابی در هادی های ترانسفورماتور77
2-10-4 تلفات هیسترزیس هسته77
3-10-4 تلفات جریان گردابی در هسته78
4-10-4 کاهش ظرفیت ترانسفورماتور79
فصل پنجم: جبران کننده های استاتیک80
1-5 مقدمه81
2-5 راکتور کنترل شده با تریستور TCR81
1-2-5 ترکیب TCR و خازنهای ثابت موازی87
3-5 راکتور اشباع شدهSCR88
1-3-5 شیب مشخصه ولتاژ89
نتیجه گیری 91
منابع و مآخذ92
چکیده به زبان انگلیسی94
فهرست تصاویر
فصل اول6
شکل1-1: نمایش خطوط شار8
شکل2-1: شمای کلی ترانسفورماتور9
شکل3-1: رابطه فوران و نیروی محرکه مغناطیسی11
شکل4-1: نمایش منحنی های هیستر زیس15
شکل5-1: نمایش بوشیگ های عایق20
شکل6-1: یک نمونه رله22
شکل7-1: رله کنترل درجه حرارت سیم پیچ ها23
شکل8-1: ظرف سیلی کاژل23
شکل9-1: شمای کلی یک ترانسفورماتور با مخزن روغن و سیستم جرقه گیر24
شکل10-1: نمایش پیچ ارت25
فصل دوم26
شکل1-2: نمایش شدت جریان در هسته چنبره شکل28
شکل2-2: منحنی مغناطیس شوندگی29
شکل3-2: منحنی مغناطیس شوندگی29
شکل4-2: منحنی های هیستر زیس31
شکل5-2: حلقه های ایستا و پویا32
شکل6-2: شکل موج جریان مغناطیس کننده34
شکل7-2: شکل موج جریان تحریک با پسماند35
شکل8-2: شکل موج شار برای جریان مغناطیس کننده سینوسی36
شکل9-2: نمایش هارمونیک های توالی مثبت و منفی38
شکل10-2: ترکیبdc توالی منفی تولید شده توسط مبدلHVDC39
شکل11-2: نمایش امپدانس هایAC,DC در روش سیستم حوزه فرکانس40
شکل12-2: مقایسه حالات مختلف اشباع41
شکل13-2: مشخصه مغناطیسی ترانسفورماتور42
شکل14-2: جریان مغناطیس کننده ترانس و محتوای هارمونیکی آن43
شکل15-2: مدار معادلT برای یک ترانسفورماتور44
شکل16-2: منحنی شار مغناطیسی برحسب جریان ترانسفورماتور44
شکل17-2: نمونه شکل موج جریان مغناطیسی برای یک ترانسفورماتور44
فصل سوم 46
شکل1-3: مولدهای هارمونی جریان47
شکل2-3: هارمونیک پنجم با ضریب3548
شکل3-3: طیف هارمونیک ها50
شکل4-3: جریان تحمیل شده روی جریان اصلی50
شکل5-3: طیف هارمونیک ها50
شکل6-3: جریان تحمیل شده روی جریان اصلی50
شکل7-3: مسیر هارمونیکی جریان در سیستم بدون خازن52
شکل8-3: مسیر هارمونی های جریان در سیستم پس از نصب خازن53
شکل9-3: تداخل الکترو استاتیکی با مدارهای مغناطیسی55
شکل10-3: ولتاژ تشدید بزرگ در اثر هارمونیک سوم56
شکل11-3: ترانسفورماتور ستاره مثلث زمین، برای حذف هارمونیک های مضرب358
شکل12-3: طراحی ترانسفورماتور برای سازگاری با هارمونیک ها58
شکل13-3: مدار معادل ساده شده سیم پیچ ترانسفورماتور60
شکل14-3: توزیع ولتاژ در طول یک سیم پیچ61
فصل چهارم63
شکل1-4: نمودار برداری ولتاژهای مؤلفه اصلی، سوم، پنجم و هفتم65
شکل2-4: نمودار برداری ولتاژهای اصلی، هارمونیک پنجم وهفتم66
شکل3-4: نمایش نیروی محرکه الکتریکیemf اتصال ستاره در هر لحظه66
شکل4-4:نمایش هارمونیک های سوم در اتصال مثلث66
شکل5-4: مربوط به نوسان نقطه خنثی70
شکل6-4: مسیر پارهای هارمونیک سوم (مضرب سه) در ترانسفورماتورهای سه فاز
نوع هسته ای 71
شکل7-4: ترانسفورماتور با اتصالY-yبدون بار75
شکل8-4: سیم پیچ سومین (ثالثیه77
فصل پنجم80
شکل1-5: ساختمان شماتیکTCR81
شکل2-5: منحنی تغییرات بر حسب زاویه هدایت و زاویه آتش83
شکل3-5: مشخصه ولتاژ- جریانTCR84
شکل4-5: یک نمونه صافی با استفاده ازL.C85
شکل5-5: حذف هارمونیک سوم با استفاده از مدارTCR با اتصال ستاره86
شکل6-5: حدف هارمونیک های پنجم وهفتم با استفاده از مدار TCR با اتصال ستاره.. 86
شکل7-5: بررسی اختلال در شبکه قدرت قبل و بعد از استفاده از جبران کننده با خازن. 87
شکل8-5: منحنی مشخصه ولتاژ- جریانSR88
شکل9-5: حذف هارمونیک های شبکه قدرت با استفاده از راکتور اشباع شدهSR..... 88
شکل10-5: منحنی مشخصه ولتاژ- جریانSR با خازن اصلاح شیب89
شکل 11-5 : حذف هارمونیکهای شبکه قدرت با استفاده از راکتور اشباع شده SR....... 89
شکل 12-5: منحنی مشخصه ولتاژ – جریان SR با خازن اصلاح شیب90
فهرست جداول
فصل دوم
جدول1-2: مقادیر هارمونیک ها در جریان مغناطیسی یک ترانسفورماتور 45
پایان نامه نوسانات ولتاژ
مقدمه
بحث نوسانات ولتاژو تاثییرات موقتی آن روی سیستم برق شاید در ابتدا به علت موقتی بودن این اثرات از اهمیت زیادی برخوردار نباشد ولی با دقت در این موضوع که این نوسانات با عبور از روی شبکه برق و گذر کردن از روی تجهیزات و وسایل حساس برقی و با توجه به دامنه بالای این اثر می تواند صدمات جبران ناپذیری به تجهیزات وارد کرده و باعث می گردد اهمیت این موضوع دو صد چندان گردد و حتی می تواند باعث ناپایداری خط عبوری انرژی گشته و صدمات جبران ناپذیری ایجاد کند .
بنابراین بحث در مورد عوامل ایجاد کننده و تاثیر گذار بر این موضوع ایجاد راهکاری مناسب برای کم کردن اثرات نامطلوب این موضوع و حدالامکان حذف کردن آن می تواند کمک قابل توجهی به صنعت انتقال و توزیع برق داشته باشد و کمک شایانی به پایداری هر چه بیشتر سیستم انتقال نماید. اما اکنون باید ببینیم چه عواملی ایجاد کننده ی این اثر نامطلوب می تواند باشد اگر از خود بارهای الکتریکی بحث را شروع کنیم می بینیم که بارها نیز می تواند به عنوان یک عامل تاثیر گذار در این موضوع باشند بارهایی نظیر کوره های الکتریکی موتورهای الکتریکی و دستگاههای جوش سهم به سزاییدر این مطلب دارند و پدیده هایی نظیر flicker ولتاژ نیز مسئله با اهمیتی است که در جای خود به بررسی آنها می پردازیم .
در ابتدای تبدیل شدن اختراع برق بعنوان یک صنعت همه گیر از آن بیشتر برای مصارف خانگی استفاده می گردد که این مسائل از اهمیت چندان زیادی برخوردار نبود لیکن با استفاده روز از فزون این پدیده جدید انرژی در صنعت این مسائل اهمیت خود را بخوبی نشان داد .
البته باید توجه داشت این موضوع با افت ولتاژ دائمی در طول یک خط انتقال برق کاملا متفاوت می باشد .
1- نوسانات ناشی از راه اندازی تجهیزات خاص در کارخانجات که در هنگام شروع کار احتیاج به مصرف بالایی دارند .
2- یکی دیگر از مسائل با اهمیت که باعث بوجود آمدن بحث پیچیده و با اهمیت حفاظت در شبک های مختلف می گردد بحث تغییرات ولتاژ ناشی از خطاهای گذرا در شبکه .
1-1 نوسانات ولتاژ ناشی از بارهای مختلف :
می توان علت ایجاد این نوسانات را اینگونه بررسی نمود که با وارد شدن انواع بارهای الکتریکی به شبکه با کشیدن جریان به سمت خویش باعث تغییر یکباره میزان انرژی داخل شبکه برق می گردد که با افت ولتاژ ناگهانی در شبکه روبرو خواهیم بود که البته در مورد بارهای کوچک می توان با استفاده از رگولاتورها این مسئله را حل نمود لیکن در مورد بارهای بزرگتر مانند کوره های القایی و موتورهای جوش بزرگ این راه نمی تواند برای نوسانات ناگهانی در ولتاژ خط کار موثری انجام دهد و باعث نوسانات ناگهانی در ولتاژ خط گردد .
اما محدوده مجاز این نوسانات برای بارهای مختلف ؟
برای بررسی آن ابتدا مفهمومی تحت عنوان flicker ولتاژ را بررسی می نماییم .
هر عاملی که باعث تغییر دامنه ولتاژ حتی در زمان خیلی کم گردد می توند عاملی برای ایجاد flicker ولتاژ باشد مانند سوییچ کردن بارهای مختلف چون جریان هجومی در لحظه راه اندازی از جریان حالت دایمی بیشتر می باشد بعنوان مثال راه اندازی موتورها یکی از منابع اصلی و معمولی ایجاد فلیکر می باشد هم چنین بارهایی که بصورت متناوب کار می کنند و مانند دستگاههای جوش قوسی یا نقطه ای و همچنین سوییچ کردن ادوات تصحیح ضریب قدرت مانند انواع بانک های خازنی.
روشهای جبران و تصحیح فلیکر :
در این مورد باید به چند نکته توجه داشت که بارهای متصل به شبکه های ضعیف در مقابل بارهای متصل به شبکه های بهم پیوسته (stiff net work) دارای نوسانات بیشتری خواهد بود .
در مورد راه اندازی موتوری می توان با استفاده از راه اندازها این مسئله را کاهش داد .
در مورد بانک های خازنی اگر همراه با بار سوییچ گردند هم می توانند اثر نامطلوب وارد شدن خود آنها را کاهش داد بلکه می توان اثرات مخرب بارها را نیز کاهش داد .
فهرست
مقدمه
نوسانات ولتاژ ناشی از بارهای مختلف
بررسی اثرات tov بر یک شبکه نمونه
اضافه ولتاژهای ناشی از کلید زنی
اضافه ولتاژ های موجی
بررسی قرار دادن برقگیر در سمت فشار ضعیف
کاراموزی تنظیم کننده های ولتاژ
مقدمه :
در اکثر آزمایشگاههای برق از منابع تغذیه برای تغذیه مدارهای مختلف الکترونیکی آنالوگ و دیجیتال استفاده می شود . تنظیم کننده های ولتاژ در این سیستم ها نقش مهمی را برعهده دارند زیرا مقدار ولتاژ مورد نیاز برای مدارها را بدون افت و خیز و تقریباً صاف فراهم می کنند .
منابع تغذیه DC ، ولتاژ AC را ابتدا یکسو و سپس آن را از صافی می گذرانند و از طرفی دامنه ولتاژ سینوسی برق شهر نیز کاملاً صاف نبوده و با افت و خیزهایی در حدود 10 تا 20 درصد باعث تغییر ولتاژ خروجی صافی
می شود.
از قطعات مورد استفاده برای رگولاتورهای ولتاژ می توان قطعاتی از قبیل ، ترانسفورماتور ، ترانزیستور ، دیود ، دیودهای زنر ، تریستور ، یا تریاک و یا آپ امپ (op Amp) و سلف (L) و خازن (C) و یا مقاومت (R) و یا ICهای خاص را نام برد .
* عوامل موثر بر تنظیم ولتاژ :
عوامل مختلفی وجود دارند که در تنظیم ولتاژ در یک تنظیم کننده موثرند از جمله این عوامل را می توان ، تغییرات سطح ولتاژ برق ، ریپل خروجی صافیها، تغییرات دما و نیز تغییرات جریان بار را نام برد .
گزارش کاراموزی تنظیم کننده های ولتاژ در 52 صفحه ورد قابل ویرایش
تنظیم کننده های ولتاژ
مقدمه :
در اکثر آزمایشگاههای برق از منابع تغذیه برای تغذیه مدارهای مختلف الکترونیکی آنالوگ و دیجیتال استفاده می شود . تنظیم کننده های ولتاژ در این سیستم ها نقش مهمی را برعهده دارند زیرا مقدار ولتاژ مورد نیاز برای مدارها را بدون افت و خیز و تقریباً صاف فراهم می کنند .
منابع تغذیه DC ، ولتاژ AC را ابتدا یکسو و سپس آن را از صافی می گذرانند و از طرفی دامنه ولتاژ سینوسی برق شهر نیز کاملاً صاف نبوده و با افت و خیزهایی در حدود 10 تا 20 درصد باعث تغییر ولتاژ خروجی صافی
می شود.
از قطعات مورد استفاده برای رگولاتورهای ولتاژ می توان قطعاتی از قبیل ، ترانسفورماتور ، ترانزیستور ، دیود ، دیودهای زنر ، تریستور ، یا تریاک و یا آپ امپ (op Amp) و سلف (L) و خازن (C) و یا مقاومت (R) و یا ICهای خاص را نام برد .
* عوامل موثر بر تنظیم ولتاژ :
عوامل مختلفی وجود دارند که در تنظیم ولتاژ در یک تنظیم کننده موثرند از جمله این عوامل را می توان ، تغییرات سطح ولتاژ برق ، ریپل خروجی صافیها، تغییرات دما و نیز تغییرات جریان بار را نام برد .
الف)* تغییرات ولتاژ ورودی :
در تمامی وسایل الکترونیکی و یا سیستم های الکترونیکی و مکانیکی و غیره و در تمامی شاخه های علمی طراحان برای اینکه یک وسیله یا سیستم را با سیستم های مشابه مقایسه کنند معیاری را در نظر می گیرند که این معیار در همه جا ثابت است .
در یک تنظیم کننده معیاری به نام تنظیم خط وجود دارد که میزان موفقیت یک تنظیم کننده ولتاژ در کاهش تغییرات ولتاژ ورودی را با این معیار می سنجند و به صورت زیر تعریف می کنیم :