تاریخچه ای درباره ی افزودنیهای آب گسترده متوسط
از زمان گسترش اولین افزودنی های کاهنده آب در اوایل سال های 1930م. افزودنی 222جزئی اساسی از بتن و به ویژه بتن های با عملکرد بالا (HPC) به کاربرده شده امروزی شده اند. تاکنون, افزودنی هایی با قابلیت های کاهنده آب, حجمی از افزودنی های شیمیایی بتن را تشکیل می دهند.
در سال 1962م(ASTM C 494) مشخصه استانداردی برای افزودنی های شیمیایی برای تعیین پارامترهایی معرفی شدند که باید برای طبقه بندی به عنوان افزودنی های رسمی (قراردادی) کاهنده آب و یا کنترل کننده گیرش برآوره شوند.
یک کاهش آب به میزان حداقل پنج درصد به عنوان یکی از شرایط لازم برای طبقه بندی به صورت نوع A کاهنده آب, نوع D کاهنده آب و کند کننده, و یا نوع E کاهنده آب و تسریع کننده مشخص شد.
در سال 1980م ASTM C 494 برای گنجانیدن پارامترهایی برای نوع F, افزودنی کاهنده آب گستره زیاد(HRWR)؛ و نوع G,
افزودنی های کاهنده آب گستره زیاد و کند کننده بررسی گردید. میزان حداقلی از کاهش آب برای طبقه بندی به عنوان یک افزودنی HRWR به صورت (12%) وضع گردید.
از یک چشم انداز عملی, افزدنی های کاهنده آب قراردادی در تولید بتن هایی آب اسلامپ هایی در حدود چهار تا پنج اینچ (100 تا 125 میلیمتر) ایده آل هستند. در حالی که افزودنی های HRWR در اسلامپ های (هشت اینچی)200 میلیمتر یا بیش تر به بهترین وجه عمل می کنند....
...
سابقه (تاریخچه) MRWR
نخستین افزودنی MRWR واقعی در سال 1984 معرفی گردید, اما آن تا اواخر سالهای 1980 برای مصرف گسترده آزاد نگردید. آن بطور رایج یکی از پر مصرف ترین افزودنیهای MRWR می باشد که تشکیل می شود از یک محلول لیگنوسولفونات با افزودنیهای برازنده متعادل کننده گیرائی و بالابرنده مقاومت و قابلیت پرداخت. آن در ابتدا برای مصرف با یک خاکستر بادی مساله داری گسترش یافت که بوسیله یک شرکت تولید کننده مشهور مخلوط آماده در یکی از ایالات غرب میانه بکار برده می شد. آن 5 تا 18 درصد کاهش آب و کارائی عالی را در سرتاسر یک گسترده وسیع اسلامپی از 125 تا 200 میلیمتر(5 تا 8 اینچ) ارائه می دهد. مهمتر از همه, کلرایدی در بر ندارد و ویژگیهای گیرایی نرمال را در سرتاسر گستره دوزبندی توصیه شده خود از (195 تا 955 میلی لیتر / 100 کیلوگرم) (3 تا 15 Ftoz/cwt) ارائه می دهد.
این افزودنی MRWRشرایط استاندارد ASTM C 494 ویژه افزودنیهای نوع A و نوع F را برآورده می سازد. و در این مقاله به آن بعنوان MRWR-AF اشاره می شود.
افزودنیهای MRWR معرفی شده
در سال 1986, افزودنیهای MRWR با معرفی مقیاس وسیع یک محصول مبتنی بر لیگنوسولفونات کاهنده آل نرمال با فوق روان کننده متعادل کننده گیرائی و بالا برنده مقاومت و قابل پرداخت بودن پیشقدم شدند. برخلاف افزودنیهای کاهنده آب قراردادی این افزودنی MRWR درجه بالاتری از کاهش آب بدون اثرگذاری بر ویژگیهای گیرائی را ارائه می دهد (شکل 1و 2).
اطلاعات موجود در شکلهای 1 و 2 در دمای محیطی برابر10 درجه سانتیگراد(50 F) برای مخلوط های بتنی با یک مقدار سیمان قراردادی 249 kg/m3 420 Lb/yd3 و اسلامپ 165 میلیمتری 6.5 اینچی بدست آمدند. این افزودنی MRWR که در عین حال در بردارنده مواد غیر کلرایدی است شرایط ASTM C 494 را برای افزودنیهای نوع ذیل برآورده
می سازد. و بدان بعنوان MRWR - A اشاره خواهد شد. ویژگیهای کارآئی MRWR - AF مشابه با ویژگیهای مربوط به MRWR - A می باشد.
در سال 1988, اولین افزودنی MRWR در بردارنده کلراید (WRWR - CL) در درجه اول برای اصلاح زمانهای گیرائی موجود در مخلوط های بتنی در بردارنده خاکستر بادی یا سرباره کوره بلند پودر شده معرفی شد.
در مقایسه با MRWR-A در بردارنده غیر کلراید, MRWR-CL می تواند کاهشهای زمان گیرائی بگستره از حدود 30 تا 45 دقیقه را در مقادیر دوزبندی بالاتر بر طبق ارگام نشان داده شده در جدول 1 ارائه دهد....
...
پایان نامه مانیتورینگ گسترده و هوشمند توربین بخار با استفاده از سیستم چند عامله براساس رویکردترکیب اطلاعات
چکیده:
در این پایان نامه، هدف، طراحی یک سیستم مونیتورینگ هوشمند برای تشخیص خطا بر روی سیستم توربین بخار می باشد. در ابتدا به ارائه توضیحات مختصری از توربین های بخار (انواع، قطعات، کارکرد و…) می پردازیم. در ادامه سیستم یک توربین بخار 440MW را در محیط شبیه سازی Matlab مدل نموده و رفتار حلقه بسته این سیستم را با طراحی یک کنترل پیش بین (GPC) مورد بررسی قرار می دهیم. سپس یک ساختار ANFIS برای شناسایی و تشخیص خطاهای رخ داده در سیستم طراحی می کنیم. در انتها، نتایج حاصل از طراحی این کنترلر و سیستم تشخیص خطا نشان داده شده است.
مقدمه:
بروز خطا در یک فرایند یکی از مهمترین مسائلی است که مهندسین کنترل با آن دست به گریبانند. برخی از نقص ها و عیوب بوجود آمده نه تنها از طریق کم کردن راندمان پروسه باعث زیان واحد صنعتی می شود بلکه می تواند در مواردی منجر به بروز فجایع بزرگ شود. به همین دلیل شناسایی زود هنگام این عیوب و سعی بر کنترل واحد صنعتی حتی در حضور آنها به منظور جلوگیری از قطعی کار فرایند یکی از مسائل مهم و به روز در زمینهی کنترل صنعتی به شمار می رود.
توربین بخار از واحدهای صنعتی مهم با عملکرد رفتاری پیچیده، غیرخطی و متغییر با زمان بوده که نقش بسیار کلیدی را در نیروگاههای حرارتی ایفا میکند . بروز عیب رفتاری موجب ایجاد اشکال در عملکرد عادی توربین بخار شده و چنانچه به موقع تشخیص و نسبت به رفع آن اقدامی صورت نگیرد منجر به توقف عملکرد و در نهایت ایجاد سوانح و حوادث تجهیزاتی و حتی جانی میشود. در این راستا شبکه هایی طراحی می شوند که بتوانند بستری را فراهم نمایند که الگوریتم های تشخیص خطا
بیشترین نرخ تشخیص درست را توسط آنها بدست آورند. روشهای ارائه شده نه تنها باید قابلیت تشخیص وقوع عیب در سیستم را دارا باشند بلکه باید بتوانند نوع خطا و مشخصات آنرا شناسایی نمایند.
فصل اول: کلیات
1-1) هدف
شناسایی و تشخیص خطا در سیستمهای صنعتی یکی از مهمترین مسائلی است که مورد توجه طراحان مهندسی قرار دارد و دراین راستا سیستمهایی را طراحی میکنند که در صورت رخداد هرگونه اشکال در سیستم سریعاً این مشکل مونیتور شده و پس ازمشخص شدن منشاء آن نسبت به برطرف نمودن آن اقدامات لازم صورت پذیرد.
هدف اصلی ما در این پروژه بررسی عملکرد توربین بخار زمانیکه یک عیب در سیستم رخ داده باشد و طراحی یک سیستم تشخیص خطا میباشد. این عیب میتواند بر روی اندازه گیری سنسورهای فشار، دما و غیره که ورودیهای سیستم هستند و یا بر روی درصد باز – بسته بودن شیرهای کنترلی که خروجی سیستم هستند اتفاق بیفتد. همچنین تجهیزات اصلی توربین نیز میتوانند دچار مشکل شوند مانند گرفتگی در Extraction های توربین، خرابی درتجهیزات رطوبت گیر و غیره. در این راستا پس از مدلسازی توربین بخار و طراحی کنترلر پیش بین مناسب، یک ساختار ANFIS برای تشخیص 12 نوع عیبی که احتمال وقوع آن در توربین زیاد است پیشنهاد میکنیم.
2-1) پیشینه تحقیق
مدلسازی توربین بخار توسط جناب آقای دکتر علی چایبخش انجام شده بود. همچنین برای تشخیص خطا در سیستمهای صنعتی در مقالات مختلف ، از روشهای عصبی مانند پرسپترون چند لایه (MLP) و SOM استفاده شده است. البته بیشتر در این مقالات بر روی کلاس بندی خطاهای رخ داده در سیستمها بحث شده است.
3-1) روش کار و تحقیق
در ابتدا مدل شبیه سازی شده توربین بخار را در نظر میگیریم و خروجی این سیستم که همان توان مکانیکی میباشد را بدست میآوریم. در مرحله بعد یک کنترل پیش بین (GPC) برای این سیستم طراحی و رفتار حلقه بسته این سیستم را مشاهده میکنیم. در ابتدا Set Point سیستم را تغییر میدهیم و خروجی سیستم را مشاهده میکنیم. سپس سه نوع اغتشاش به این سیستم اعمال میکنیم و خروجی سیستم را (در یک نقطه کار مشخص) مشاهده میکنیم. در انتها، یک سیستم تشخیص خطا را به کمک ساختار ANFIS طراحی میکنیم و نتایج حاصل از شناسایی و تشخیص خطا را در توربین بخار مشاهده می کنیم.
مقاله بررسی سیستمهای طیف گسترده در 50 صفحه ورد قابل ویرایش
تاریخچه و مقدمه
طراحان سیستمهای مخاراتی درگذشته و حال همواره به دنبال دستیابی به تکنیکهای مدولاسیون ودمدولاسیونی هستند که نیازهای مخابراتی و ملاحظاتی مورد نظر آنهارا به بهترین صورت مرتفع سازند. اکثر این تکنیکها سعی در بهینه سازی استفاده از یک یا هر دو پارامتر مخابرات یعنی قدرت و پهنای باند داشته، هدف اصلی آنها کم کردن احتمال خطای بین در ارسال سیگنال از یک محل به محل دیگر، با فرض حضور نویز گوسی سفید جمع شونده میباشد.
با این وجود گاهی نیاز به تکنیکهای مدولاسیونی که نیازهایی غیر از موارد مذکور را برآورده کنند به چشم می خورد. به عنوان مثال علاوه برکانالهای AWGN کانالهای دیگری وجود دارند که از این مدل تبعیت نمی کنند. مثلا یک سیستم مخابرات نظامی که تحت تاثیر تداخل عمدی «اختلال»[1] قرار می گیرد، یا کانال چند مسیره که به خاطر انتشار سیگنال از چند مسیر ایجاد میشود نمونه هایی از این کانالها می باشند، لذا امروزه استفاده از تکنیکهای مدولاسیون با خواصی نظیر مقاومت در برابر اختلال، عملکرد در طیف انرژی پایین، دسترسی چندگانه بدون کنترل خارجی ایجاد کانالهای سری بدون امکان شنود خارجی و … به سرعت ر و به افزایش است. یک روش مدولاسیون و دمدولاسیون که میتواند در اینگونه موارد مناسب باشد تکنیک طیف گسترده[2] میباشد.
60 سال پیش درآگوست 1942 هدی لامار جرج آنیل با ثبت سند سیستم مخابرات مخفی در اداره ثبت اختراعات ایالات متحده دریچه ای به فضای دوردست «سیستم های طیف گسترده» گشودند. تکنیکهای طیف گسترده در ابتدا برای اهداف نظامی ایجاد و مورد استفاده قرار گرفتند. اما با پیشرفت های فراوانی که در عرصه VLSI تکنیکهای پیشرفته پردازش سیگنال و ساخت میکروپروسسورهای سریع و ارزان قیمت صورت گرفت امکان توسعه تجهیزات طیف گسترده برای استفاده های شخصی فراهم شد.
ازمشخصات بارز یک سیستم طیف گسترده میتوان به گسترش طیف سیگنال ارسالی در پهنای باند مستقل و بسیار وسیعتر از باند پیام، حذف گسترش و حصول مجدد طیف توان درگیرنده و بکارگیری یک دنباله شبه تصادفی غیر از دنباله پیام در فرستنده و گیرنده اشاره نمود. دو شرط عمده زیر باعث تمایز سیستم های طیف گسترده باز مدولاسیون های نظیر FM باند وسیع که در آنها نیز از پهنای باند سیگنال پیام استفاده میشود شده است .
1- د ریک سیتم طیف گسترده پهنا باند ارسالی بسیار بزرگتر پهنای باند سیگنال پیام میباشد.
2- گسترش طیف توسط دنباله شبه تصافدی دیگری که از سیگنال پیام مستقل و برای گیرنده کاملاً مشخص است، انجام میشود. شکل 1-1 دیاگرام کلی سیستم طیف گسترده را نشان میدهد.
دراین دیاگرام منظور از کد گسترش دهنده یک دنباله باینری شبه تصادفی با نرخ بسیار بالاتر از نرخ سیگنال پیام و لذا طیف فرکانسی وسیعی میباشد. شکل 2-1 نمونه ای از این دنباله را نشان می دهند.
در فصول بعد این بخش ابتدا به معرفی بیشتر سیستم های طیف گسترده پرداخته انواع ، خصوصیت ها و کاربردهای این سیستم ها را بیان می کنیم.
فصل دوم
سیستم های طیف گسترده
استفاده از سیستم های طیف گسترده باعث بهبود کیفیت انتقال اطلاعات در سیستم های مخابراتی میشود. بطور کلی مقدار بهبود کیفیتی را که دراثر استفاده از یک سیستم طیف گسترده بدست میآید بهره پردازش می گوییم. بعبارت دیگر آن را میتوان تفاوت میان عملکرد سیستمی که از طیف گسترده استفاده میکند و عملکرد سیستمی که از این تکنیک استفاده نمی کنند، هنگامی که بقیه شرایط برای دو سیستم یکسان باشد تعریف نمود، بنابراین بهره پردازش پارامتری است که با آن میتوان کیفیت سیستم طیف گسترده را نشان داد. سه رابطه رایج برای بهره پردازش درنظر گرفته شده است.
1- نسبت SNR خروجی به SNR وردی بعد از فیلتر کردن نهایی
(1-2)
2- نسبت پهنای باند سیگنال گسترده شده به نرخ ارسال اطلاعات.
(2-2)
3- نسبت پهنای باند سیگنال گسترده شده به پهنای باند پیام (مدوله شده)
(3-2)
رابطه اول یک رابطه تئوری کلی است و روابط بعدی را میتوان به ترتیب برای دو نوع سیستم طیف گسترده FH و DS از آن نتیجه گرفت.
بهره پردازش امروزه درسیستم های طیف گسترده تجاری 10 تا 100 ( Db 20-10) و در سیستم های طیف گسترده نظامی 100 تا 1000000 (Db 60-30) میباشد.
1-2- انواع سیستم های طیف گسترده
انواع سیستم های طیف گسترده عبارتند از:
1- سیستم طیف گسترده دنباله مستقیم[3] یا شبه نویز[4] (DS) / (PN)
2- سیستم طیف گسترده پرش فرکانسی[5] (FH)
3- سیستم طیف گسترده پرش زمانی[6] (TH)
4- سیستم طیف گسترده جاروب فرکانسی (CHIRP)
5- سیستم طیف گسترده با ترکیب روش های فوق (HYBRID)
در ادامه به بررسی اجمالی انواع سیستم های طیف گسترده میپردازیم.
1-1-2- سیستم طیف گسترده دنباله مستقیم یا شبه نویز (DS) / (PN)
شکل 1-2 بلوک دیاگرام یک مدولاتور طیف گسترده DS را نشان میدهد.
شکل 1-2: دیاگرام بلوکی فرستنده DS.
دراین روش همانطور که مشاهده میشود عمل گسترش طیف با ضرب مستقیم کد گسترش دهنده C(T) در موج مدوله شدن انجام میشود. چون کد گسترش دهنده یک دنباله باینری شبه تصادفی با نرخ بسیار بالاتر از نرخ اطلاعات میباشد از نظر فرکانسی طیفی با پهنای باند وسیع و شبیه نویز دارد که باعث گسترش طیف سیگنال مدوله شده در حوزه فرکانس میشود. سیگنالهای ایجاد شده با این تکنیک در حوزه فرکانسی بصورت نویز ظاهر شده طبیعت آنها چنین می نماید که تصادفی هستند در صورتی که الا تصادفی نبوده و توان سیگنال به زیر سطح نویز کاهش می یابد. در این تکنکی هیچ گونه اطلاعاتی از بین نمی ورد و اطلاعات درگیرنده مجددا قابل بازیابی است. در این گونه سیستمها میتوان حتی گسترش طیف را قبل از مدولاسیون حامل انجام داد. در این حالت ابتدا کد گسترش دهنده در سیگنال پیام ضرب شده، سپس سیگنال گسترده حامل را مدوله میکند.
با استفاده از روابط در نظر گرفته شده برای محاسبه بهره پردازش مشاهده میشود که درسیستم طیف گسترده دنباله مستقیم (DS) هر چه نرخ دنباله کد گسترش دهنده بیشتر از نرخ سیگنال پیام باشد (دوره پالس دنباله گسترش دهنده کمتر از دوره پالس دنباله پیام باشد) بهره پردزاش بزرگتر، پهنای باند سیگنال گسترش یافته وسیعتر و کارایی سیستم بیشتر خواهد بود. بعبارت دیگر:
1-1-4-3- خواص دنباله های با طول حداکثر
دنباله های باطول حداکثر دارای ویژگیها و خواصی هستند که کاربرد آنها را در سیستمهای طیف گسترده ممکن می سازد. این خواص عبارتند از:
1- در هر پریود از دنباله ماکزیمال تعداد یکها و صفرها تقریبا برابر است. بعبارت دقیقتر تعداد یکها در هر پریود از دنباله ماکزیمال یکی بیشتر از تعداد صفرها میباشد.
2- با توجه به خاصیت 1 دنباله متعادل شده میباشد. بعبارت دیگر در یک پریود از دنباله ماکزیمال جمع مولفه های دنباله برابر 1+ میباشد. این نوع دنباله ها نه تنها به خواص تصادفی بودن نزدیک می باشند، دارای مولفه DC صفر نیز بوده باعث صرفه جویی در توان ارسالی می گردند. همچنین درسیستمهای CDMA برای جلوگیری از آسیب پذیری در مقابل اختلال باید از دنباله های کد متعامد استفاده نمود.
3- جمع مبنای 2 هر دنباله ماکزیمال با شیفت یافته خویش به اندازه m
ثابت میشود تابع خود همبستگی پریود یک گسسته، که پیش ازاین اشاره کردیم و بکمک آن میتوان تابع همبستگی و چگالی طیف توان موج شبه تصادفی را تعیین کرد، برای یک دنباله با طول حداکثر تابعی دو مقداری بوده برابر است با [1]:
(16-3)
که در آن N یک عدد صحیح و پریود دنباله است. با نگاه به رابطه با شرط N بزرگ در بخش بعد دیده میشود که تابع خود همبستگی دنباله شبه تصادفی تا حد زیادی به تابع ضربه شبیه می شود، که این امر برای ملاحظات همزمانی درسیستمهای طیف گسترده بسیار مهم میباشد.
همچنین با افزایش n که افزایش دنباله های با طول حداکثر تولید شده توسط ساختار را به همراه خواهد داشت د رظاهر تصورمی شود که میتوان با تخصیص هر دنباله از این مجموعه به یک مشترک تعداد مشترکین را در سیستمهای طیف گسترده چند کاربره سیستم CDMA افزایش داد. اما چون هر دو دنباله از این مجموعه توسط یک g(D) تولید شده و شیفت یافته هم می باشند، لذا تابع همبستگی متقابل بین آنها با تابع همبستگی یکی میشود. در این حالت برای تابع همبستگی متقابل برابر 1/N و برای N و K=1 مقدارآن برابر واحد خواهد بود که این مسئله برای کی مجموعه کد گسترش دهنده مناسب نمی باشند.
پایان نامه سیستم های کنترل گسترده پست های فشار قوی
چکیده
به علت ساختار شبکه های توزیع، گستردگی و در معرض عوامل محیطی بودن آنها بسیاری از خاموشیهای اعمال شده به مشترکین ناشی از حوادث این شبکه هامی باشد.
روش عیب یابی فعلی در شبکه های توزیع به علت عدم وجود تجهیزات حفاظتی و مانیتورینگ مناسب و نیز نبودن امکان کنترل از راه دور زمانبر بوده و بصورت سعی و خطا می باشد.این مسئله باعث برخی آسیبهای احتمالی به تجهیزات شبکه و مشترکین نیز می گردد.
افزایش اطلاعات از وقایع سیستم اتوماسیون شبکه های توزیع در سالهای اخیر مورد توجه قرار گرفته است که با اجرای آن اطلاعاتی نظیر عملکرد تجهیزات حفاظتی، وضعیت کلیدها و مقادیر ولتاژ و جریان در مرکز قابل مشاهده بوده و امکان ارسال فرمان برای تجهیزات وجود دارد.
در این پروژه سعی شده است معرفی جامعی از سیستمهای اتوماسیون ومانیتورینگ پست ارائه گردد.
در فصل دوم از پروژه به شرح کلی سیستمهای اتوماسیون پست(SAS) پرداخته شده است و همچنین انواع سیستمهای پست همراه با مزایای آنها نیز بیان شده است.
در فصل سوم، پیشرفته ترین سیستم اتوماسیون پست(SAS570) بطور کامل شرح داده شده است و به توزیع مواردی از قبیل خصوصیات، طراحی تجهیزات و وظایف این سیستم پرداخته شده است.
اجزای سیستم اتوماسیون پست بسیار زیاد وگسترده است و صحبت در مورد تمامی آنها نیاز به تالیف چندین کتاب دارد ولی بطور خلاصه چند جزء مهم سیستم اتوماسیون پست در فصل چهارم آورده شده است.
در فصل پنجم به شرح کاملی از سیستم مانیتورینگ پست(530 SMS) پرداخته شده است.
امید است این پروژه بتواند دید جدیدی نسبت به تکنولوژی پیشرفته اتوماسیون و مانیتورینگ به شما ارائه کند.
فهرست
عنوان | صفحه |
چکیده | 1 |
فصل اول مقدمه |
3 |
فصل دوم طراحی و کارآیی SAS 1-2- طراحی و کارآیی SAS 2-2- مزایای کارآیی عملی سیستم 3-2- سیستم های مانیتورینگ و اتوماسیون 4-2- خصوصیات عمومی سیستم های SAS 5XX |
6 7 7 7 9 |
فصل سوم سیستم پیشرفته اتوماسیون پست SAS 570 1-3- سیستم پیشرفته اتوماسیون پست SAS 570 2-3- نصب سیستم 3-3- خصوصیات مشترک SAS 4-3- خصوصیات SAS 570 5-3- طراحی و عملکرد مشترک SAS 6-3- طراحی و عملکرد SAS 570 7-3- تجهیزات سیستم 8-3- تنظیمات سیستم 9-3- وظایف سیستم 10-3-وظایف ابتدایی مانیتورینگ سیستم 11-3- وظایف ابتدایی کنترل سیستم 12-3- نگاهی کلی به پست 13-3- وظایف ابتدایی مانیتورینگ (اختیاری) 14-3- وظایف ابتدایی کنترل (اختیاری) 15-3- خلاصه قابلیت های سیستم اتوماسیون پست |
11 13 15 17 18 19 19 20 24 25 26 29 32 32 34 36 |
فصل چهارم اجزاء سیستم اتوماسیون 1-4- کوپل کننده های ستاره ای (RER 111) 2-4- واحد گیرنده و فرستنده (RER 107) 3-4- GPS 4-4- نرم افزار کنترل سیستم اتوماسیون پست Micro Scada 5-4- فیبر نوری در سیستم حفاظت و کنترل پست های فشار قوی 6-4- رله REC 561 ترمینال کنترل حفاظت 7-4- رله REL 670 حفاظت دیستانس خط 8-4- رله RED 521 ترمینال حفاظت دیفرانسیل 9-4- رله RET 670 حفاظت ترانسفورماتور 10-4- رله REX 521 پشتیبان فیدر 11-4- سیستم REB 500 SYS حفاظت پست 12-4- رله RES 521 اندازه گیری زاویه |
40 41 44 45 46 49 51 52 54 56 59 61 63 |
فصل پنجم سیستم مانیتورینگ SMS 530 |
65 |
منابع و مآخذ | 78 |
پیوست ها | 79 |